PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot 3D Anomaly Detection
- URL: http://arxiv.org/abs/2410.00320v3
- Date: Mon, 28 Oct 2024 03:07:18 GMT
- Title: PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot 3D Anomaly Detection
- Authors: Qihang Zhou, Jiangtao Yan, Shibo He, Wenchao Meng, Jiming Chen,
- Abstract summary: This paper introduces PointAD, a novel approach that transfers the strong generalization capabilities of CLIP for recognizing 3D anomalies on unseen objects.
PointAD renders 3D anomalies into multiple 2D renderings and projects them back into 3D space.
Our model can directly integrate RGB information, further enhancing the understanding of 3D anomalies in a plug-and-play manner.
- Score: 13.60524473223155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot (ZS) 3D anomaly detection is a crucial yet unexplored field that addresses scenarios where target 3D training samples are unavailable due to practical concerns like privacy protection. This paper introduces PointAD, a novel approach that transfers the strong generalization capabilities of CLIP for recognizing 3D anomalies on unseen objects. PointAD provides a unified framework to comprehend 3D anomalies from both points and pixels. In this framework, PointAD renders 3D anomalies into multiple 2D renderings and projects them back into 3D space. To capture the generic anomaly semantics into PointAD, we propose hybrid representation learning that optimizes the learnable text prompts from 3D and 2D through auxiliary point clouds. The collaboration optimization between point and pixel representations jointly facilitates our model to grasp underlying 3D anomaly patterns, contributing to detecting and segmenting anomalies of unseen diverse 3D objects. Through the alignment of 3D and 2D space, our model can directly integrate RGB information, further enhancing the understanding of 3D anomalies in a plug-and-play manner. Extensive experiments show the superiority of PointAD in ZS 3D anomaly detection across diverse unseen objects.
Related papers
- General Geometry-aware Weakly Supervised 3D Object Detection [62.26729317523975]
A unified framework is developed for learning 3D object detectors from RGB images and associated 2D boxes.
Experiments on KITTI and SUN-RGBD datasets demonstrate that our method yields surprisingly high-quality 3D bounding boxes with only 2D annotation.
arXiv Detail & Related papers (2024-07-18T17:52:08Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - Real3D-AD: A Dataset of Point Cloud Anomaly Detection [75.56719157477661]
We introduce Real3D-AD, a challenging high-precision point cloud anomaly detection dataset.
With 1,254 high-resolution 3D items from forty thousand to millions of points for each item, Real3D-AD is the largest dataset for high-precision 3D industrial anomaly detection.
We present a comprehensive benchmark for Real3D-AD, revealing the absence of baseline methods for high-precision point cloud anomaly detection.
arXiv Detail & Related papers (2023-09-23T00:43:38Z) - Bridged Transformer for Vision and Point Cloud 3D Object Detection [92.86856146086316]
Bridged Transformer (BrT) is an end-to-end architecture for 3D object detection.
BrT learns to identify 3D and 2D object bounding boxes from both points and image patches.
We experimentally show that BrT surpasses state-of-the-art methods on SUN RGB-D and ScanNetV2 datasets.
arXiv Detail & Related papers (2022-10-04T05:44:22Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
We propose frustum-aware geometric reasoning (FGR) to detect vehicles in point clouds without any 3D annotations.
Our method consists of two stages: coarse 3D segmentation and 3D bounding box estimation.
It is able to accurately detect objects in 3D space with only 2D bounding boxes and sparse point clouds.
arXiv Detail & Related papers (2021-05-17T07:29:55Z) - Monocular 3D Object Detection with Decoupled Structured Polygon
Estimation and Height-Guided Depth Estimation [41.29145717658494]
This paper proposes a novel unified framework which decomposes the detection problem into a structured polygon prediction task and a depth recovery task.
Compared to the widely-used 3D bounding box proposals, it is shown to be a better representation for 3D detection.
Experiments are conducted on the challenging KITTI benchmark, in which our method achieves state-of-the-art detection accuracy.
arXiv Detail & Related papers (2020-02-05T03:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.