論文の概要: Heterogeneous Feature Representation for Digital Twin-Oriented Complex
Networked Systems
- arxiv url: http://arxiv.org/abs/2309.13229v1
- Date: Sat, 23 Sep 2023 01:40:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 21:25:11.953151
- Title: Heterogeneous Feature Representation for Digital Twin-Oriented Complex
Networked Systems
- Title(参考訳): ディジタル・ツイン指向複合ネットワークシステムのための異種特徴表現
- Authors: Jiaqi Wen, Bogdan Gabrys, Katarzyna Musial
- Abstract要約: 現実を正確に表現できる複雑なネットワークシステムのモデルを構築することは、重要な研究領域を形成する。
本研究の目的は,Digital Twin-Oriented Complex Networked Systemsにおけるノード特徴の表現力を改善することである。
- 参考スコア(独自算出の注目度): 13.28255056212425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building models of Complex Networked Systems (CNS) that can accurately
represent reality forms an important research area. To be able to reflect real
world systems, the modelling needs to consider not only the intensity of
interactions between the entities but also features of all the elements of the
system. This study aims to improve the expressive power of node features in
Digital Twin-Oriented Complex Networked Systems (DT-CNSs) with heterogeneous
feature representation principles. This involves representing features with
crisp feature values and fuzzy sets, each describing the objective and the
subjective inductions of the nodes' features and feature differences. Our
empirical analysis builds DT-CNSs to recreate realistic physical contact
networks in different countries from real node feature distributions based on
various representation principles and an optimised feature preference. We also
investigate their respective disaster resilience to an epidemic outbreak
starting from the most popular node. The results suggest that the increasing
flexibility of feature representation with fuzzy sets improves the expressive
power and enables more accurate modelling. In addition, the heterogeneous
features influence the network structure and the speed of the epidemic
outbreak, requiring various mitigation policies targeted at different people.
- Abstract(参考訳): 現実を正確に表現できる複雑なネットワークシステム(CNS)の構築モデルは重要な研究領域を形成する。
実世界のシステムを反映するためには、モデリングはエンティティ間の相互作用の強度だけでなく、システムのすべての要素の特徴も考慮する必要がある。
本研究の目的は,Digital Twin-Oriented Complex Networked Systems (DT-CNS) におけるノード特徴の表現力を改善することである。
これは特徴値とファジィセットで特徴を表現することを含み、それぞれがノードの特徴と特徴の違いの目的と主観的帰納について記述する。
我々の実証分析は、様々な表現原理と最適化された特徴嗜好に基づく実ノード特徴分布から、各国のリアルな物理的接触ネットワークを再現するDT-CNSを構築している。
また,最も人気のあるノードから発生した感染拡大に対する災害の回復力についても検討した。
その結果,ファジィ集合を用いた特徴表現の柔軟性が高まり,表現力が向上し,より正確なモデリングが可能となった。
さらに、異質な特徴はネットワーク構造や流行の速さに影響を与え、異なる人々を対象とした様々な緩和政策を必要とする。
関連論文リスト
- Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
本稿では、因果推論理論に基づく新しい手法TRACERを紹介し、DNN決定の根底にある因果ダイナミクスを推定する。
提案手法は入力特徴に系統的に介入し,特定の変化がネットワークを介してどのように伝播するかを観察し,内部の活性化と最終的な出力に影響を与える。
TRACERはさらに、モデルバイアスの可能性のある反ファクトを生成することで説明可能性を高め、誤分類に対する対照的な説明を提供する。
論文 参考訳(メタデータ) (2024-10-07T20:44:53Z) - The Dynamic Net Architecture: Learning Robust and Holistic Visual Representations Through Self-Organizing Networks [3.9848584845601014]
動的ネットアーキテクチャ(DNA)と呼ばれる新しいインテリジェントシステムアーキテクチャを提案する。
DNAは繰り返し安定化されたネットワークに依存し、それを視覚に応用するために議論する。
論文 参考訳(メタデータ) (2024-07-08T06:22:10Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
機能的に等価な機能と呼ぶものの定義を提供します。
これらの特徴は特定の変換の下で等価な出力を生成する。
反復的特徴マージ(Iterative Feature Merging)というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-10T16:27:12Z) - Digital Twin-Oriented Complex Networked Systems based on Heterogeneous
Node Features and Interaction Rules [13.28255056212425]
本研究では,Digital Twin-Oriented Complex Networked Systemsのための拡張可能なモデリングフレームワークを提案する。
我々は,これらのネットワークに広まる流行に関連するネットワーク成長と異なる透過性に関する様々な特徴と規則を取り入れたシミュレーションベースのDT-CNSの実験を行う。
論文 参考訳(メタデータ) (2023-08-18T01:54:48Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
自己注意モジュール(SAM)は、異なる層にまたがる強い相関した注意マップを生成する。
Dense-and-Implicit Attention (DIA)はSAMをレイヤ間で共有し、長期間のメモリモジュールを使用する。
我々のシンプルで効果的なDIAは、様々なネットワークバックボーンを一貫して拡張できます。
論文 参考訳(メタデータ) (2022-10-27T13:24:08Z) - Polysemanticity and Capacity in Neural Networks [1.4174475093445233]
ニューラルネットワークの個々のニューロンは、しばしば無関係な特徴の混合を表す。
この現象は多意味性(polysemanticity)と呼ばれ、ニューラルネットワークの解釈を難しくする。
論文 参考訳(メタデータ) (2022-10-04T20:28:43Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
グラフ畳み込みネットワーク(GCN)は骨格に基づく行動認識において広く採用されている。
近年提案されている骨格に基づく行動認識法の性能は以下の要因によって制限されていると論じる。
近年の注目機構に着想を得て,アクション関連関係情報を取得するためのマルチグラインド・コンテキスト集中モジュール MCF を提案する。
論文 参考訳(メタデータ) (2022-03-31T02:45:24Z) - Perception-and-Regulation Network for Salient Object Detection [8.026227647732792]
本稿では,特徴間の相互依存性を明示的にモデル化し,特徴融合プロセスを適応的に制御する新しいグローバルアテンションユニットを提案する。
知覚部は、分類網内の完全に接続された層の構造を用いて、物体のサイズと形状を学習する。
さらに、ネットワークのグローバルな認識能力向上のために、模倣眼観察モジュール(IEO)が使用される。
論文 参考訳(メタデータ) (2021-07-27T02:38:40Z) - Spatio-Temporal Representation Factorization for Video-based Person
Re-Identification [55.01276167336187]
本稿では、re-IDのための時空間表現分解モジュール(STRF)を提案する。
STRFはフレキシブルな新しい計算ユニットであり、re-IDのための既存のほとんどの3D畳み込みニューラルネットワークアーキテクチャと併用することができる。
実験により、STRFは様々なベースラインアーキテクチャの性能を向上し、新しい最先端の成果を示す。
論文 参考訳(メタデータ) (2021-07-25T19:29:37Z) - Feature Decomposition and Reconstruction Learning for Effective Facial
Expression Recognition [80.17419621762866]
本稿では,表情認識のための特徴分解再構成学習(FDRL)手法を提案する。
FDRLは、FDN(Feature Decomposition Network)とFRN(Feature Restruction Network)の2つの重要なネットワークで構成されている。
論文 参考訳(メタデータ) (2021-04-12T02:22:45Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。