Multi-modal Domain Adaptation for REG via Relation Transfer
- URL: http://arxiv.org/abs/2309.13247v1
- Date: Sat, 23 Sep 2023 04:02:06 GMT
- Title: Multi-modal Domain Adaptation for REG via Relation Transfer
- Authors: Yifan Ding, Liqiang Wang and Boqing Gong
- Abstract summary: We propose a novel approach to effectively transfer multi-modal knowledge through a specially relation-tailored approach for the Referring Expression Grounding (REG) problem.
Our approach tackles the multi-modal domain adaptation problem by simultaneously enriching inter-domain relations and transferring relations between domains.
- Score: 46.03480352815051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain adaptation, which aims to transfer knowledge between domains, has been
well studied in many areas such as image classification and object detection.
However, for multi-modal tasks, conventional approaches rely on large-scale
pre-training. But due to the difficulty of acquiring multi-modal data,
large-scale pre-training is often impractical. Therefore, domain adaptation,
which can efficiently utilize the knowledge from different datasets (domains),
is crucial for multi-modal tasks. In this paper, we focus on the Referring
Expression Grounding (REG) task, which is to localize an image region described
by a natural language expression. Specifically, we propose a novel approach to
effectively transfer multi-modal knowledge through a specially
relation-tailored approach for the REG problem. Our approach tackles the
multi-modal domain adaptation problem by simultaneously enriching inter-domain
relations and transferring relations between domains. Experiments show that our
proposed approach significantly improves the transferability of multi-modal
domains and enhances adaptation performance in the REG problem.
Related papers
- Cross-Domain Policy Transfer by Representation Alignment via Multi-Domain Behavioral Cloning [13.674493608667627]
We present a simple approach for cross-domain policy transfer that learns a shared latent representation across domains and a common abstract policy on top of it.
Our approach leverages multi-domain behavioral cloning on unaligned trajectories of proxy tasks and employs maximum mean discrepancy (MMD) as a regularization term to encourage cross-domain alignment.
arXiv Detail & Related papers (2024-07-24T00:13:00Z) - Investigating the potential of Sparse Mixtures-of-Experts for multi-domain neural machine translation [59.41178047749177]
We focus on multi-domain Neural Machine Translation, with the goal of developing efficient models which can handle data from various domains seen during training and are robust to domains unseen during training.
We hypothesize that Sparse Mixture-of-Experts (SMoE) models are a good fit for this task, as they enable efficient model scaling.
We conduct a series of experiments aimed at validating the utility of SMoE for the multi-domain scenario, and find that a straightforward width scaling of Transformer is a simpler and surprisingly more efficient approach in practice, and reaches the same performance level as SMoE.
arXiv Detail & Related papers (2024-07-01T09:45:22Z) - Role Prompting Guided Domain Adaptation with General Capability Preserve
for Large Language Models [55.51408151807268]
When tailored to specific domains, Large Language Models (LLMs) tend to experience catastrophic forgetting.
crafting a versatile model for multiple domains simultaneously often results in a decline in overall performance.
We present the RolE Prompting Guided Multi-Domain Adaptation (REGA) strategy.
arXiv Detail & Related papers (2024-03-05T08:22:41Z) - Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
Multi-source unsupervised domain adaptation (MUDA) aims to transfer knowledge from related source domains to an unlabeled target domain.
We propose a novel approach called Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation (D3AAMDA)
This mechanism controls the alignment level of features between each source domain and the target domain, effectively leveraging the local advantageous feature information within the source domains.
arXiv Detail & Related papers (2023-07-26T09:40:19Z) - Transfer RL via the Undo Maps Formalism [29.798971172941627]
Transferring knowledge across domains is one of the most fundamental problems in machine learning.
We propose TvD: transfer via distribution matching, a framework to transfer knowledge across interactive domains.
We show this objective leads to a policy update scheme reminiscent of imitation learning, and derive an efficient algorithm to implement it.
arXiv Detail & Related papers (2022-11-26T03:44:28Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.