論文の概要: Empowering Distributed Training with Sparsity-driven Data Synchronization
- arxiv url: http://arxiv.org/abs/2309.13254v2
- Date: Sat, 14 Dec 2024 00:20:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 17:58:04.152737
- Title: Empowering Distributed Training with Sparsity-driven Data Synchronization
- Title(参考訳): 疎性駆動型データ同期による分散トレーニングの強化
- Authors: Zhuang Wang, Zhaozhuo Xu, Jingyi Xi, Yuke Wang, Anshumali Shrivastava, T. S. Eugene Ng,
- Abstract要約: 分散トレーニングは、複数のGPUでディープラーニングモデルのトレーニングをスケールアップするデファクトスタンダードである。
まず,スパーステンソルの特性を一般モデルで解析し,疎度の基礎を理解する。
次に,スパーステンソルのための通信方式の設計空間を体系的に探索し,最適点を求める。
我々は、Zenが通信時間で最大5.09倍、トレーニングスループットで最大2.48倍のスピードアップを達成できることを実証した。
- 参考スコア(独自算出の注目度): 33.95040042348349
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Distributed training is the de facto standard to scale up the training of deep learning models with multiple GPUs. Its performance bottleneck lies in communications for gradient synchronization. Although high tensor sparsity is widely observed, the optimal communication scheme to fully leverage sparsity is still missing. This paper aims to bridge this gap. We first analyze the characteristics of sparse tensors in popular models to understand the fundamentals of sparsity. We then systematically explore the design space of communication schemes for sparse tensors and find the optimal ones. These findings give a new understanding and inspire us to develop a holistic gradient synchronization system called Zen for sparse tensors. We demonstrate that Zen can achieve up to 5.09x speedup in communication time and up to $2.48\times$ speedup in training throughput compared to the state-of-the-art methods.
- Abstract(参考訳): 分散トレーニングは、複数のGPUでディープラーニングモデルのトレーニングをスケールアップするデファクトスタンダードである。
その性能ボトルネックは、勾配同期のための通信にある。
高テンソル間隔が広く観測されているが、ポーラシティを完全に活用する最適な通信方式はいまだに欠落している。
この論文は、このギャップを埋めることを目的としている。
まず,スパーステンソルの特性を一般モデルで解析し,疎度の基礎を理解する。
次に,スパーステンソルのための通信方式の設計空間を体系的に探索し,最適点を求める。
これらの結果は新たな理解を与え、スパーステンソルのためのZenと呼ばれる全体的勾配同期システムを開発するきっかけとなった。
我々は,Zenが通信時間で最大5.09倍,トレーニングスループットで最大2.48倍のスピードアップを達成できることを実証した。
関連論文リスト
- An Efficient Sparse Kernel Generator for O(3)-Equivariant Deep Networks [0.5737287537823071]
回転同変グラフニューラルネットワークは、空間深層学習タスクにおける最先端の性能を得る。
クレーブシュ=ゴルドンテンソル積(Clebsch-Gordon tensor product, CG)は、2つの高次特徴ベクトルと高度に構造化されたスパーステンソルを交換して高密度出力ベクトルを生成するカーネルである。
我々は,CGテンソル製品用のGPUスパースカーネルジェネレータを導入し,既存のオープンソース実装とクローズドソース実装の大幅な高速化を実現した。
論文 参考訳(メタデータ) (2025-01-23T08:20:47Z) - Coarse-To-Fine Tensor Trains for Compact Visual Representations [19.216356079910533]
「延長アップサンプリングトレイン」は粗い方法でテンソルトレイン表現を学習する新しい方法である。
我々は,(1)圧縮,(2)の3つの軸に沿った表現を評価する。
denoising 機能と (3) 画像補完機能。
論文 参考訳(メタデータ) (2024-06-06T17:59:23Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNNは、コミュニケーションのないトレーニングを実装することで、トレーニングプロセスを大幅に高速化する、分散GNNトレーニングフレームワークである。
我々は、CoFree-GNNが既存の最先端のGNNトレーニングアプローチよりも最大10倍高速なGNNトレーニングプロセスを実証した。
論文 参考訳(メタデータ) (2023-08-06T21:04:58Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - Adaptive Message Quantization and Parallelization for Distributed
Full-graph GNN Training [6.557328947642343]
大きなグラフ上のグラフニューラルネットワーク(GNN)の分散フルグラフトレーニングは、帯域幅の要求と時間を要する。
本稿では,分散フルグラフ学習を高速化する効率的なGNNトレーニングシステムであるAdaQPを提案する。
論文 参考訳(メタデータ) (2023-06-02T09:02:09Z) - Dynamic Sparsity Is Channel-Level Sparsity Learner [91.31071026340746]
ダイナミックスパーストレーニング(Dynamic Sparse Training, DST)は、ススパーストレーニングの指導的アプローチである。
チャネル対応動的スパース(Chase)は、非構造的動的スパースをチャネルレベルのスパースにシームレスに変換する。
提案手法は,非構造的空間性からチャネルワイド空間性へ変換する。
論文 参考訳(メタデータ) (2023-05-30T23:33:45Z) - Boosting Distributed Full-graph GNN Training with Asynchronous One-bit
Communication [23.883543151975136]
大規模なグラフ上でグラフニューラルネットワーク(GNN)をトレーニングすることは、高いメモリ要求と限られたGPUメモリとの競合のため、難しい。
本稿では,GNNにおける1ビット量子化計算手法を用いた分散GNN学習フレームワークSylvieを提案する。
詳細は、Sylvie氏は、送信したデータを定量化し、受信したデータを各レイヤの完全な精度の値に戻すための軽量な低ビットモジュールを提供する。
論文 参考訳(メタデータ) (2023-03-02T14:02:39Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
スパイキングニューラルネットワーク(SNN)は、前者よりも生物学的に可塑性でエネルギー効率が高いことが示されている。
本稿では,局所タンデム学習(Local Tandem Learning, LTL)と呼ばれる一般化学習規則を提案する。
CIFAR-10データセット上の5つのトレーニングエポック内に高速なネットワーク収束を示すとともに,計算複雑性が低い。
論文 参考訳(メタデータ) (2022-10-10T10:05:00Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - Accelerating Neural Network Training with Distributed Asynchronous and
Selective Optimization (DASO) [0.0]
分散非同期および選択的最適化(DASO)手法を導入し、ネットワークトレーニングを加速します。
DASOは、ノードローカルおよびグローバルネットワークで構成される階層型および非同期通信スキームを使用する。
DASOは従来のネットワークや最先端ネットワークで最大34%のトレーニング時間を短縮できることを示す。
論文 参考訳(メタデータ) (2021-04-12T16:02:20Z) - Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch [75.69506249886622]
ディープニューラルネットワーク(DNN)におけるスパーシティは、資源制約された環境でモデルを圧縮し、加速するために広く研究されている。
本稿では,N:M細粒構造スパースネットワークのスクラッチからトレーニングを初めて行う。
論文 参考訳(メタデータ) (2021-02-08T05:55:47Z) - DeepReduce: A Sparse-tensor Communication Framework for Distributed Deep
Learning [79.89085533866071]
本稿では,スパーステンソルの圧縮通信のための汎用的フレームワークであるDeepReduceを紹介する。
DeepReduceはテンソルを2つの集合、値とインデックスに分解し、これらの集合の独立圧縮と結合圧縮を可能にする。
大規模実モデルを用いた実験により,DeepReduceはデータ転送を少なくし,既存の手法よりも計算オーバーヘッドを小さくすることを示した。
論文 参考訳(メタデータ) (2021-02-05T11:31:24Z) - Sparsity in Deep Learning: Pruning and growth for efficient inference
and training in neural networks [78.47459801017959]
Sparsityは、モバイル機器に適合する通常のネットワークのメモリフットプリントを減らすことができる。
ニューラルネットワークの要素を除去および追加するためのアプローチ、モデルの疎性を達成するための異なるトレーニング戦略、実際に疎性を利用するメカニズムについて説明する。
論文 参考訳(メタデータ) (2021-01-31T22:48:50Z) - Towards Scalable Distributed Training of Deep Learning on Public Cloud
Clusters [30.4449309904155]
分散トレーニングのための新しいトップkスパシフィケーション通信ライブラリを提案する。
CNNやTransformerの既存の最先端システムよりも25%~40%高速であることを示す。
論文 参考訳(メタデータ) (2020-10-20T17:16:29Z) - Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Network
Training [0.5219568203653523]
我々は,まず,第1の訓練を行わず,第2の訓練を行ない,第2の訓練を行ない,第1の訓練を行ない,第1の訓練を行ない,第1の訓練を行ない,第2の訓練を行ないながら,第1の訓練を行ない,第1の訓練を行ない,第2の訓練を行ないながら、第2の訓練を行ない、第2の訓練を行ない、第2の訓練を行ない、第2の訓練を行ない、第2の訓練を行ない、第2の訓練を行なう。
最先端のDNNアクセラレーターをスパーストレーニングサポートなしで使用した同等の未使用モデルのトレーニングと比較すると、Procrustesは最大3.26$times$少ないエネルギーを消費し、様々なモデルにわたって最大4$times$のスピードアップを提供する。
論文 参考訳(メタデータ) (2020-09-23T07:39:55Z) - ShadowSync: Performing Synchronization in the Background for Highly
Scalable Distributed Training [10.73956838502053]
現代のリコメンデーションシステムトレーニングに適した分散フレームワークであるShadowsyncを紹介します。
トレーニングプロセスの一部として同期が行われる以前の作業とは対照的に、Shadowsyncは同期をトレーニングから分離し、バックグラウンドで実行する。
論文 参考訳(メタデータ) (2020-03-07T00:26:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。