Collision Avoidance and Navigation for a Quadrotor Swarm Using End-to-end Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2309.13285v2
- Date: Mon, 6 May 2024 00:10:07 GMT
- Title: Collision Avoidance and Navigation for a Quadrotor Swarm Using End-to-end Deep Reinforcement Learning
- Authors: Zhehui Huang, Zhaojing Yang, Rahul Krupani, Baskın Şenbaşlar, Sumeet Batra, Gaurav S. Sukhatme,
- Abstract summary: We propose an end-to-end DRL approach to control quadrotor swarms in environments with obstacles.
We provide our agents a curriculum and a replay buffer of the clipped collision episodes to improve performance in obstacle-rich environments.
Our work is the first work that demonstrates the possibility of learning neighbor-avoiding and obstacle-avoiding control policies trained with end-to-end DRL.
- Score: 8.864432196281268
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: End-to-end deep reinforcement learning (DRL) for quadrotor control promises many benefits -- easy deployment, task generalization and real-time execution capability. Prior end-to-end DRL-based methods have showcased the ability to deploy learned controllers onto single quadrotors or quadrotor teams maneuvering in simple, obstacle-free environments. However, the addition of obstacles increases the number of possible interactions exponentially, thereby increasing the difficulty of training RL policies. In this work, we propose an end-to-end DRL approach to control quadrotor swarms in environments with obstacles. We provide our agents a curriculum and a replay buffer of the clipped collision episodes to improve performance in obstacle-rich environments. We implement an attention mechanism to attend to the neighbor robots and obstacle interactions - the first successful demonstration of this mechanism on policies for swarm behavior deployed on severely compute-constrained hardware. Our work is the first work that demonstrates the possibility of learning neighbor-avoiding and obstacle-avoiding control policies trained with end-to-end DRL that transfers zero-shot to real quadrotors. Our approach scales to 32 robots with 80% obstacle density in simulation and 8 robots with 20% obstacle density in physical deployment. Video demonstrations are available on the project website at: https://sites.google.com/view/obst-avoid-swarm-rl.
Related papers
- Whole-body end-effector pose tracking [10.426087117345096]
We introduce a whole-body RL formulation for end-effector pose tracking in a large workspace on rough, unstructured terrains.
Our proposed method involves a terrain-aware sampling strategy for the robot's initial configuration and end-effector pose commands.
On deployment, it achieves a pose-tracking error of 2.64 cm and 3.64 degrees, outperforming existing competitive baselines.
arXiv Detail & Related papers (2024-09-24T12:51:32Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Reaching the Limit in Autonomous Racing: Optimal Control versus
Reinforcement Learning [66.10854214036605]
A central question in robotics is how to design a control system for an agile mobile robot.
We show that a neural network controller trained with reinforcement learning (RL) outperformed optimal control (OC) methods in this setting.
Our findings allowed us to push an agile drone to its maximum performance, achieving a peak acceleration greater than 12 times the gravitational acceleration and a peak velocity of 108 kilometers per hour.
arXiv Detail & Related papers (2023-10-17T02:40:27Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Enhanced method for reinforcement learning based dynamic obstacle
avoidance by assessment of collision risk [0.0]
This paper proposes a general training environment where we gain control over the difficulty of the obstacle avoidance task.
We found that shifting the training towards a greater task difficulty can massively increase the final performance.
arXiv Detail & Related papers (2022-12-08T07:46:42Z) - Scalable Task-Driven Robotic Swarm Control via Collision Avoidance and
Learning Mean-Field Control [23.494528616672024]
We use state-of-the-art mean-field control techniques to convert many-agent swarm control into classical single-agent control of distributions.
Here, we combine collision avoidance and learning of mean-field control into a unified framework for tractably designing intelligent robotic swarm behavior.
arXiv Detail & Related papers (2022-09-15T16:15:04Z) - Risk-based implementation of COLREGs for autonomous surface vehicles
using deep reinforcement learning [1.304892050913381]
Deep reinforcement learning (DRL) has shown great potential for a wide range of applications.
In this work, a subset of the International Regulations for Preventing Collisions at Sea (COLREGs) is incorporated into a DRL-based path following and obstacle avoidance system.
The resulting autonomous agent dynamically interpolates between path following and COLREG-compliant collision avoidance in the training scenario, isolated encounter situations, and AIS-based simulations of real-world scenarios.
arXiv Detail & Related papers (2021-11-30T21:32:59Z) - Vision-Based Mobile Robotics Obstacle Avoidance With Deep Reinforcement
Learning [49.04274612323564]
Obstacle avoidance is a fundamental and challenging problem for autonomous navigation of mobile robots.
In this paper, we consider the problem of obstacle avoidance in simple 3D environments where the robot has to solely rely on a single monocular camera.
We tackle the obstacle avoidance problem as a data-driven end-to-end deep learning approach.
arXiv Detail & Related papers (2021-03-08T13:05:46Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z) - Meta-Reinforcement Learning for Robotic Industrial Insertion Tasks [70.56451186797436]
We study how to use meta-reinforcement learning to solve the bulk of the problem in simulation.
We demonstrate our approach by training an agent to successfully perform challenging real-world insertion tasks.
arXiv Detail & Related papers (2020-04-29T18:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.