Whole-body end-effector pose tracking
- URL: http://arxiv.org/abs/2409.16048v1
- Date: Tue, 24 Sep 2024 12:51:32 GMT
- Title: Whole-body end-effector pose tracking
- Authors: Tifanny Portela, Andrei Cramariuc, Mayank Mittal, Marco Hutter,
- Abstract summary: We introduce a whole-body RL formulation for end-effector pose tracking in a large workspace on rough, unstructured terrains.
Our proposed method involves a terrain-aware sampling strategy for the robot's initial configuration and end-effector pose commands.
On deployment, it achieves a pose-tracking error of 2.64 cm and 3.64 degrees, outperforming existing competitive baselines.
- Score: 10.426087117345096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining manipulation with the mobility of legged robots is essential for a wide range of robotic applications. However, integrating an arm with a mobile base significantly increases the system's complexity, making precise end-effector control challenging. Existing model-based approaches are often constrained by their modeling assumptions, leading to limited robustness. Meanwhile, recent Reinforcement Learning (RL) implementations restrict the arm's workspace to be in front of the robot or track only the position to obtain decent tracking accuracy. In this work, we address these limitations by introducing a whole-body RL formulation for end-effector pose tracking in a large workspace on rough, unstructured terrains. Our proposed method involves a terrain-aware sampling strategy for the robot's initial configuration and end-effector pose commands, as well as a game-based curriculum to extend the robot's operating range. We validate our approach on the ANYmal quadrupedal robot with a six DoF robotic arm. Through our experiments, we show that the learned controller achieves precise command tracking over a large workspace and adapts across varying terrains such as stairs and slopes. On deployment, it achieves a pose-tracking error of 2.64 cm and 3.64 degrees, outperforming existing competitive baselines.
Related papers
- Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
By training a single policy across many different kinds of robots, a robot learning method can leverage much broader and more diverse datasets.
We propose CrossFormer, a scalable and flexible transformer-based policy that can consume data from any embodiment.
We demonstrate that the same network weights can control vastly different robots, including single and dual arm manipulation systems, wheeled robots, quadcopters, and quadrupeds.
arXiv Detail & Related papers (2024-08-21T17:57:51Z) - Redundancy-aware Action Spaces for Robot Learning [17.961314026588987]
Joint space and task space control are the two dominant action modes for controlling robot arms within the robot learning literature.
This work analyses the criteria for designing action spaces for robot manipulation and introduces ER (End-effector Redundancy), a novel action space formulation.
We present two implementations of ER, ERAngle (ERA) and ERJoint (ERJ), and we show that ERJ in particular demonstrates superior performance across multiple settings.
arXiv Detail & Related papers (2024-06-06T15:08:41Z) - Visual Whole-Body Control for Legged Loco-Manipulation [22.50054654508986]
We study the problem of mobile manipulation using legged robots equipped with an arm.
We propose a framework that can conduct the whole-body control autonomously with visual observations.
arXiv Detail & Related papers (2024-03-25T17:26:08Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Polybot: Training One Policy Across Robots While Embracing Variability [70.74462430582163]
We propose a set of key design decisions to train a single policy for deployment on multiple robotic platforms.
Our framework first aligns the observation and action spaces of our policy across embodiments via utilizing wrist cameras.
We evaluate our method on a dataset collected over 60 hours spanning 6 tasks and 3 robots with varying joint configurations and sizes.
arXiv Detail & Related papers (2023-07-07T17:21:16Z) - Learning Bipedal Walking for Humanoids with Current Feedback [5.429166905724048]
We present an approach for overcoming the sim2real gap issue for humanoid robots arising from inaccurate torque-tracking at the actuator level.
Our approach successfully trains a unified, end-to-end policy in simulation that can be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion.
arXiv Detail & Related papers (2023-03-07T08:16:46Z) - Bi-Manual Manipulation and Attachment via Sim-to-Real Reinforcement
Learning [23.164743388342803]
We study how to solve bi-manual tasks using reinforcement learning trained in simulation.
We also discuss modifications to our simulated environment which lead to effective training of RL policies.
In this work, we design a Connect Task, where the aim is for two robot arms to pick up and attach two blocks with magnetic connection points.
arXiv Detail & Related papers (2022-03-15T21:49:20Z) - Regularized Deep Signed Distance Fields for Reactive Motion Generation [30.792481441975585]
Distance-based constraints are fundamental for enabling robots to plan their actions and act safely.
We propose Regularized Deep Signed Distance Fields (ReDSDF), a single neural implicit function that can compute smooth distance fields at any scale.
We demonstrate the effectiveness of our approach in representative simulated tasks for whole-body control (WBC) and safe Human-Robot Interaction (HRI) in shared workspaces.
arXiv Detail & Related papers (2022-03-09T14:21:32Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Improving Input-Output Linearizing Controllers for Bipedal Robots via
Reinforcement Learning [85.13138591433635]
The main drawbacks of input-output linearizing controllers are the need for precise dynamics models and not being able to account for input constraints.
In this paper, we address both challenges for the specific case of bipedal robot control by the use of reinforcement learning techniques.
arXiv Detail & Related papers (2020-04-15T18:15:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.