論文の概要: Tackling the Unlimited Staleness in Federated Learning with Intertwined Data and Device Heterogeneities
- arxiv url: http://arxiv.org/abs/2309.13536v3
- Date: Sun, 22 Dec 2024 21:15:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:51:07.613050
- Title: Tackling the Unlimited Staleness in Federated Learning with Intertwined Data and Device Heterogeneities
- Title(参考訳): 干渉データとデバイス不均一性を用いたフェデレーション学習における非制限定常性に対処する
- Authors: Haoming Wang, Wei Gao,
- Abstract要約: フェデレートラーニングは、クライアントの異なるローカルデータ分散と、モデルの更新をアップロードする際のレイテンシに起因する、データとデバイスの不均一性によって影響を受ける可能性がある。
本稿では,この変換の精度と計算効率を保証する新しいFLフレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.9851737525099225
- License:
- Abstract: Federated Learning (FL) can be affected by data and device heterogeneities, caused by clients' different local data distributions and latencies in uploading model updates (i.e., staleness). Traditional schemes consider these heterogeneities as two separate and independent aspects, but this assumption is unrealistic in practical FL scenarios where these heterogeneities are intertwined. In these cases, traditional FL schemes are ineffective, and a better approach is to convert a stale model update into a unstale one. In this paper, we present a new FL framework that ensures the accuracy and computational efficiency of this conversion, hence effectively tackling the intertwined heterogeneities that may cause unlimited staleness in model updates. Our basic idea is to estimate the distributions of clients' local training data from their uploaded stale model updates, and use these estimations to compute unstale client model updates. In this way, our approach does not require any auxiliary dataset nor the clients' local models to be fully trained, and does not incur any additional computation or communication overhead at client devices. We compared our approach with the existing FL strategies on mainstream datasets and models, and showed that our approach can improve the trained model accuracy by up to 25% and reduce the number of required training epochs by up to 35%. Source codes can be found at: https://github.com/pittisl/FL-with-intertwined-heterogeneity.
- Abstract(参考訳): フェデレートラーニング(FL)は、クライアントの異なるローカルデータ分散と、モデルの更新(すなわち、不安定性)をアップロードする際のレイテンシに起因するデータとデバイスの不均一性によって影響を受ける可能性がある。
伝統的なスキームでは、これらの不均一性は2つの独立した側面と独立な側面とみなすが、この仮定はこれらの不均一性が絡み合う現実的なFLシナリオでは非現実的である。
このような場合、従来のFLスキームは効果がなく、古いモデルの更新を不安定なものに変換するのがよいアプローチである。
本稿では,この変換の精度と計算効率を保証する新しいFLフレームワークを提案する。
我々の基本的な考え方は、アップロードした古いモデルの更新からクライアントのローカルトレーニングデータの分布を推定し、これらの推定を使って不安定なクライアントモデルの更新を計算することである。
このようにして、私たちのアプローチでは、クライアントのローカルモデルを完全にトレーニングする必要はなく、クライアントデバイスで追加の計算や通信オーバーヘッドを発生させません。
われわれのアプローチは、主流のデータセットやモデル上の既存のFL戦略と比較し、トレーニングされたモデルの精度を最大25%改善し、必要なトレーニングエポックの数を最大35%削減できることを示した。
ソースコードは以下の通り:https://github.com/pittisl/FL-with-intertwined-heterogeneity。
関連論文リスト
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
フェデレートラーニング(FL)は、ローカルデータを集中化せずに、分散エッジデバイス間でモデルをトレーニングすることで、データのプライバシを保護する強力なアプローチとして登場した。
本稿では,テキストエンコーダをサーバ上に配置し,画像エンコーダをローカルデバイス上で動作させる,モダリティアライメントを利用した新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T13:30:03Z) - Lightweight Industrial Cohorted Federated Learning for Heterogeneous Assets [0.0]
フェデレーテッド・ラーニング(FL)は、分散機械学習(ML)モデルをトレーニングするための最も広く採用されているコラボレーティブ・ラーニング・アプローチである。
しかし、すべてのFLタスクにおいて、大きなデータ類似性や均質性は認められているため、FLは産業環境では特に設計されていない。
本稿では,コホーティングにモデルパラメータを用いる軽量産業用コホーテッドFL (licFL) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-25T12:48:56Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Federated Virtual Learning on Heterogeneous Data with Local-global
Distillation [17.998623216905496]
局所グロバル蒸留(FedLGD)を用いた不均一データのフェデレーションバーチャルラーニング
局所Global Distillation (FedLGD) を用いた不均一データに対するフェデレーション仮想学習法を提案する。
提案手法は, 蒸留仮想データ量が極めて少ない様々な条件下で, 最先端の異種FLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2023-03-04T00:35:29Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
フェデレートラーニングは、統一グローバルモデルの学習を協調するために、異種データを持つ多数のクライアントを可能にする。
標準FLアルゴリズムは、サーバのグローバルモデルを近似するために、モデルパラメータや勾配の更新を平均化する。
本稿では,クライアント更新の標準平均化の代替として,FLの勾配マスク平均化手法を提案する。
論文 参考訳(メタデータ) (2022-01-28T08:42:43Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
フェデレートラーニング(Federated Learning、FL)は、集中型モデルの分散ラーニングのためのフレームワークである。
我々は,共通局所勾配勾配勾配(SGD)FLアルゴリズムを強化するコンバージェント OTA FL (COTAF) アルゴリズムを開発した。
我々は,COTAFにより誘導されるプリコーディングが,OTA FLを用いて訓練されたモデルの収束率と精度を顕著に向上させることを示す。
論文 参考訳(メタデータ) (2020-09-27T08:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。