論文の概要: Embers of Autoregression: Understanding Large Language Models Through
the Problem They are Trained to Solve
- arxiv url: http://arxiv.org/abs/2309.13638v1
- Date: Sun, 24 Sep 2023 13:35:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 18:21:35.119265
- Title: Embers of Autoregression: Understanding Large Language Models Through
the Problem They are Trained to Solve
- Title(参考訳): 自己回帰のエンバー: 解決するために訓練された問題を通して大きな言語モデルを理解する
- Authors: R. Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, Thomas L.
Griffiths
- Abstract要約: 我々は、単語予測タスクを解決するために、大規模言語モデルが採用する戦略について予測する。
11 つのタスクで 2 つの LLM を評価し,LLM が確率の影響を受けていることを示す。
我々は、LSMをまるで人間であるかのように評価するのではなく、異なるタイプのシステムとして扱うべきだと結論付けている。
- 参考スコア(独自算出の注目度): 21.55766758950951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread adoption of large language models (LLMs) makes it important to
recognize their strengths and limitations. We argue that in order to develop a
holistic understanding of these systems we need to consider the problem that
they were trained to solve: next-word prediction over Internet text. By
recognizing the pressures that this task exerts we can make predictions about
the strategies that LLMs will adopt, allowing us to reason about when they will
succeed or fail. This approach - which we call the teleological approach -
leads us to identify three factors that we hypothesize will influence LLM
accuracy: the probability of the task to be performed, the probability of the
target output, and the probability of the provided input. We predict that LLMs
will achieve higher accuracy when these probabilities are high than when they
are low - even in deterministic settings where probability should not matter.
To test our predictions, we evaluate two LLMs (GPT-3.5 and GPT-4) on eleven
tasks, and we find robust evidence that LLMs are influenced by probability in
the ways that we have hypothesized. In many cases, the experiments reveal
surprising failure modes. For instance, GPT-4's accuracy at decoding a simple
cipher is 51% when the output is a high-probability word sequence but only 13%
when it is low-probability. These results show that AI practitioners should be
careful about using LLMs in low-probability situations. More broadly, we
conclude that we should not evaluate LLMs as if they are humans but should
instead treat them as a distinct type of system - one that has been shaped by
its own particular set of pressures.
- Abstract(参考訳): 大規模言語モデル(llm)の普及は、その強みと限界を認識することが重要である。
これらのシステムを総合的に理解するためには、インターネットテキスト上の次の単語予測という、彼らが解決するために訓練された問題を考える必要がある。
このタスクがもたらすプレッシャーを認識することで、LSMが採用する戦略について予測することが可能になります。
テレロジカルアプローチと呼ばれるこのアプローチでは,実行すべきタスクの確率,目標出力の確率,提供された入力の確率という,llmの正確性に影響を与える3つの要因を特定します。
確率が重要でない決定論的設定であっても、これらの確率が低い場合よりも高い精度が得られると予測する。
予測実験では,11タスクで2つのLLM(GPT-3.5とGPT-4)を評価し,その確率が仮定された方法でのLLMの影響を強く示す。
多くの場合、実験は驚くべき失敗モードを明らかにします。
例えば、単純な暗号を復号するGPT-4の精度は、出力が高確率のワードシーケンスである場合に51%、低確率では13%である。
これらの結果から,低確率環境でのLSMの使用には,AI実践者が注意すべきであることが示唆された。
より広義には、私たちはLSMをまるで人間であるかのように評価するべきではない、代わりに異なるタイプのシステムとして扱うべきだ、と結論付けています。
関連論文リスト
- Predicting Emergent Capabilities by Finetuning [98.9684114851891]
微調整された言語モデルでは,出現頻度の低いモデルに展開するスケーリングのポイントをシフトできることがわかった。
提案手法は4つの標準NLPベンチマークを用いて検証する。
いくつかのケースでは、最大4倍の計算でトレーニングされたモデルが出現したかどうかを正確に予測できる。
論文 参考訳(メタデータ) (2024-11-25T01:48:09Z) - Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models [79.76293901420146]
大規模言語モデル(LLM)は、出力の信頼性が不可欠である様々な高い領域で採用されている。
本研究では,不確実性推定の脆弱性を調査し,攻撃の可能性を探る。
攻撃者がLSMにバックドアを埋め込むことができ、入力中の特定のトリガーによって起動されると、最終的な出力に影響を与えることなくモデルの不確実性を操作できることを示す。
論文 参考訳(メタデータ) (2024-07-15T23:41:11Z) - Do Large Language Models Exhibit Cognitive Dissonance? Studying the Difference Between Revealed Beliefs and Stated Answers [13.644277507363036]
我々は,これらの能力が調整プロンプトとMCQの外部で測定可能かどうかを検討する。
以上の結果から, LLMの回答は, Stated Answer と大きく異なることが示唆された。
テキスト補完はLLMの中核にあるため,これらの結果は共通評価手法が部分画像のみを提供する可能性があることを示唆している。
論文 参考訳(メタデータ) (2024-06-21T08:56:35Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners [10.746821861109176]
大型言語モデル(LLM)は、ロボットタスクのためのゼロショットタスクプランナーとして、目覚ましいパフォーマンスをみせている。
しかし、以前の研究のオープンループの性質は、LSMベースの計画がエラーを起こしやすく、脆弱である。
本研究では,不確実性に基づくMLLM故障検出装置をベースとした,閉ループLLMに基づくKnowLoop計画のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-01T12:52:06Z) - "I'm Not Sure, But...": Examining the Impact of Large Language Models' Uncertainty Expression on User Reliance and Trust [51.542856739181474]
不確実性の自然言語表現の違いが、参加者の信頼、信頼、全体的なタスクパフォーマンスにどのように影響するかを示す。
その結果, 一人称表情は, 参加者のシステムに対する信頼度を低下させ, 参加者の正確性を高めつつ, システムの回答に同調する傾向にあることがわかった。
以上の結果から,不確実性の自然言語表現の使用は,LLMの過度な依存を軽減するための効果的なアプローチである可能性が示唆された。
論文 参考訳(メタデータ) (2024-05-01T16:43:55Z) - Evaluation and Improvement of Fault Detection for Large Language Models [30.760472387136954]
本稿では,大規模言語モデル(LLM)における既存の故障検出手法の有効性について検討する。
既存の手法の故障検出能力を高めるために, textbfMutation による予測を行う textbfConfidence textbfSmoothing フレームワーク textbfMuCS を提案する。
論文 参考訳(メタデータ) (2024-04-14T07:06:12Z) - Making Pre-trained Language Models both Task-solvers and
Self-calibrators [52.98858650625623]
プレトレーニング言語モデル(PLM)は、様々な現実世界のシステムのバックボーンとして機能する。
以前の研究は、余分なキャリブレーションタスクを導入することでこの問題を緩和できることを示している。
課題に対処するためのトレーニングアルゴリズムLM-TOASTを提案する。
論文 参考訳(メタデータ) (2023-07-21T02:51:41Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
従来の信頼性推論手法は、内部モデル情報やモデル微調整へのホワイトボックスアクセスに依存していた。
これにより、不確実性推定のためのブラックボックスアプローチの未解決領域を探索する必要性が高まっている。
言語的信頼を導き出すための戦略の推進、複数の応答を生成するためのサンプリング方法、一貫性を計算するための集約手法の3つの要素からなる体系的フレームワークを定義する。
論文 参考訳(メタデータ) (2023-06-22T17:31:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。