Explainable Machine Learning for ICU Readmission Prediction
- URL: http://arxiv.org/abs/2309.13781v4
- Date: Fri, 13 Sep 2024 06:33:53 GMT
- Title: Explainable Machine Learning for ICU Readmission Prediction
- Authors: Alex G. C. de Sá, Daniel Gould, Anna Fedyukova, Mitchell Nicholas, Lucy Dockrell, Calvin Fletcher, David Pilcher, Daniel Capurro, David B. Ascher, Khaled El-Khawas, Douglas E. V. Pires,
- Abstract summary: The intensive care unit (ICU) comprises a complex hospital environment.
Uncertain, competing and unplanned aspects within this environment increase the difficulty in uniformly implementing the care pathway.
Several utilisation works have tried to predict readmission through patients' medical information.
This work proposes a standardised and explainable machine learning pipeline to model patient readmission on a multicentric database.
- Score: 0.10071153797668914
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The intensive care unit (ICU) comprises a complex hospital environment, where decisions made by clinicians have a high level of risk for the patients' lives. A comprehensive care pathway must then be followed to reduce p complications. Uncertain, competing and unplanned aspects within this environment increase the difficulty in uniformly implementing the care pathway. Readmission contributes to this pathway's difficulty, occurring when patients are admitted again to the ICU in a short timeframe, resulting in high mortality rates and high resource utilisation. Several works have tried to predict readmission through patients' medical information. Although they have some level of success while predicting readmission, those works do not properly assess, characterise and understand readmission prediction. This work proposes a standardised and explainable machine learning pipeline to model patient readmission on a multicentric database (i.e., the eICU cohort with 166,355 patients, 200,859 admissions and 6,021 readmissions) while validating it on monocentric (i.e., the MIMIC IV cohort with 382,278 patients, 523,740 admissions and 5,984 readmissions) and multicentric settings. Our machine learning pipeline achieved predictive performance in terms of the area of the receiver operating characteristic curve (AUC) up to 0.7 with a Random Forest classification model, yielding an overall good calibration and consistency on validation sets. From explanations provided by the constructed models, we could also derive a set of insightful conclusions, primarily on variables related to vital signs and blood tests (e.g., albumin, blood urea nitrogen and hemoglobin levels), demographics (e.g., age, and admission height and weight), and ICU-associated variables (e.g., unit type). These insights provide an invaluable source of information during clinicians' decision-making while discharging ICU patients.
Related papers
- Machine Learning-Based Prediction of ICU Readmissions in Intracerebral Hemorrhage Patients: Insights from the MIMIC Databases [0.0]
Intracerebral hemorrhage (ICH) is a life-risking condition characterized by bleeding within the brain parenchyma.
This study utilized the Medical Information Mart for Intensive Care (MIMIC-III and MIMIC-IV) databases to develop predictive models for ICU readmission risk.
arXiv Detail & Related papers (2025-01-02T10:19:27Z) - An Oversampling-enhanced Multi-class Imbalanced Classification Framework for Patient Health Status Prediction Using Patient-reported Outcomes [6.075416560330067]
Patient-reported outcomes (PROs) directly collected from cancer patients being treated with radiation therapy play a vital role in assisting clinicians in counseling patients regarding likely toxicities.
We explore various machine learning techniques to predict patient outcomes related to health status using PROBoost from a cancer photon/proton therapy center.
arXiv Detail & Related papers (2024-11-16T14:54:18Z) - Predicting Unplanned Readmissions in the Intensive Care Unit: A
Multimodality Evaluation [2.2559617939136505]
A hospital readmission is when a patient who was discharged from the hospital is admitted again for the same or related care within a certain period.
We use state-of-the-art machine learning approaches in time-series analysis and natural language processing to predict Unplanned Readmissions in ICUs.
arXiv Detail & Related papers (2023-05-14T12:20:13Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - Using Deep Learning-based Features Extracted from CT scans to Predict
Outcomes in COVID-19 Patients [0.4841303207359715]
A novel methodology is proposed by combining multi-modal features, extracted from Computed Tomography (CT) scans and Electronic Health Record (EHR) data.
Deep learning models are leveraged to extract quantitative features from CT scans.
These features combined with those directly read from the EHR database are fed into machine learning models to eventually output the probabilities of patient outcomes.
arXiv Detail & Related papers (2022-05-10T16:22:16Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - COVID-Net Clinical ICU: Enhanced Prediction of ICU Admission for
COVID-19 Patients via Explainability and Trust Quantification [71.80459780697956]
We introduce COVID-Net Clinical ICU, a neural network for ICU admission prediction based on patient clinical data.
The proposed COVID-Net Clinical ICU was built using a clinical dataset from Hospital Sirio-Libanes comprising of 1,925 COVID-19 patients.
We conducted system-level insight discovery using a quantitative explainability strategy to study the decision-making impact of different clinical features.
arXiv Detail & Related papers (2021-09-14T14:16:32Z) - Using machine learning techniques to predict hospital admission at the
emergency department [0.0]
One of the most important tasks in the Emergency Department (ED) is to promptly identify the patients who will benefit from hospital admission.
Machine Learning (ML) techniques show promise as diagnostic aids in healthcare.
We investigated the following features seeking to investigate their performance in predicting hospital admission.
arXiv Detail & Related papers (2021-06-23T16:37:37Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - CovidCare: Transferring Knowledge from Existing EMR to Emerging Epidemic
for Interpretable Prognosis [20.701122594508675]
We propose a deep-learning-based approach, CovidCare, to enhance the prognosis for inpatients with emerging infectious diseases.
CovidCare learns to embed the COVID-19-related medical features based on massive existing EMR data via transfer learning.
We conduct the length of stay prediction experiments for patients on a real-world COVID-19 dataset.
arXiv Detail & Related papers (2020-07-17T09:20:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.