SuPerPM: A Large Deformation-Robust Surgical Perception Framework Based on Deep Point Matching Learned from Physical Constrained Simulation Data
- URL: http://arxiv.org/abs/2309.13863v2
- Date: Wed, 27 Mar 2024 21:15:27 GMT
- Title: SuPerPM: A Large Deformation-Robust Surgical Perception Framework Based on Deep Point Matching Learned from Physical Constrained Simulation Data
- Authors: Shan Lin, Albert J. Miao, Ali Alabiad, Fei Liu, Kaiyuan Wang, Jingpei Lu, Florian Richter, Michael C. Yip,
- Abstract summary: We present a surgical perception framework, SuPerPM, that leverages learning-based non-rigid point cloud matching for data association.
The proposed framework is demonstrated on several challenging surgical datasets that are characterized by large deformations.
- Score: 28.314243346768112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manipulation of tissue with surgical tools often results in large deformations that current methods in tracking and reconstructing algorithms have not effectively addressed. A major source of tracking errors during large deformations stems from wrong data association between observed sensor measurements with previously tracked scene. To mitigate this issue, we present a surgical perception framework, SuPerPM, that leverages learning-based non-rigid point cloud matching for data association, thus accommodating larger deformations. The learning models typically require training data with ground truth point cloud correspondences, which is challenging or even impractical to collect in surgical environments. Thus, for tuning the learning model, we gather endoscopic data of soft tissue being manipulated by a surgical robot and then establish correspondences between point clouds at different time points to serve as ground truth. This was achieved by employing a position-based dynamics (PBD) simulation to ensure that the correspondences adhered to physical constraints. The proposed framework is demonstrated on several challenging surgical datasets that are characterized by large deformations, achieving superior performance over state-of-the-art surgical scene tracking algorithms.
Related papers
- Synthetic Data for Robust Stroke Segmentation [0.0]
Current deep learning-based approaches to lesion segmentation in neuroimaging often depend on high-resolution images and extensive annotated data.
This paper introduces a novel synthetic data framework tailored for stroke lesion segmentation.
Our approach trains models with label maps from healthy and stroke datasets, facilitating segmentation across both normal and pathological tissue.
arXiv Detail & Related papers (2024-04-02T13:42:29Z) - Learning-Based Biharmonic Augmentation for Point Cloud Classification [79.13962913099378]
Biharmonic Augmentation (BA) is a novel and efficient data augmentation technique.
BA diversifies point cloud data by imposing smooth non-rigid deformations on existing 3D structures.
We present AdvTune, an advanced online augmentation system that integrates adversarial training.
arXiv Detail & Related papers (2023-11-10T14:04:49Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems.
We employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation.
The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data.
arXiv Detail & Related papers (2023-06-27T14:41:18Z) - Generating artificial digital image correlation data using
physics-guided adversarial networks [2.07180164747172]
Digital image correlation (DIC) has become a valuable tool to monitor and evaluate mechanical experiments of cracked specimen.
We present a method to directly generate large amounts of artificial displacement data of cracked specimen resembling real interpolated DIC displacements.
arXiv Detail & Related papers (2023-03-28T12:52:40Z) - Predicting Loose-Fitting Garment Deformations Using Bone-Driven Motion
Networks [63.596602299263935]
We present a learning algorithm that uses bone-driven motion networks to predict the deformation of loose-fitting garment meshes at interactive rates.
We show that our method outperforms state-of-the-art methods in terms of prediction accuracy of mesh deformations by about 20% in RMSE and 10% in Hausdorff distance and STED.
arXiv Detail & Related papers (2022-05-03T07:54:39Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - PhysGNN: A Physics-Driven Graph Neural Network Based Model for
Predicting Soft Tissue Deformation in Image-Guided Neurosurgery [0.15229257192293202]
We propose a data-driven model that approximates the solution of finite element analysis (FEA) by leveraging graph neural networks (GNNs)
We demonstrate that the proposed architecture, PhysGNN, promises accurate and fast soft tissue deformation approximations while remaining computationally feasible, suitable for neurosurgical settings.
arXiv Detail & Related papers (2021-09-09T15:43:59Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - The unreasonable effectiveness of Batch-Norm statistics in addressing
catastrophic forgetting across medical institutions [8.244654685687054]
We investigate trade-off between model refinement and retention of previously learned knowledge.
We propose a simple yet effective approach, adapting Elastic weight consolidation (EWC) using the global batch normalization statistics of the original dataset.
arXiv Detail & Related papers (2020-11-16T16:57:05Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.