TouchUp-G: Improving Feature Representation through Graph-Centric
Finetuning
- URL: http://arxiv.org/abs/2309.13885v1
- Date: Mon, 25 Sep 2023 05:44:40 GMT
- Title: TouchUp-G: Improving Feature Representation through Graph-Centric
Finetuning
- Authors: Jing Zhu, Xiang Song, Vassilis N. Ioannidis, Danai Koutra, Christos
Faloutsos
- Abstract summary: Graph Neural Networks (GNNs) have become the state-of-the-art approach for many high-impact, real-world graph applications.
For feature-rich graphs, a prevalent practice involves utilizing a PM directly to generate features.
This practice is suboptimal because the node features extracted from PM are graph-agnostic and prevent GNNs from fully utilizing the potential correlations between the graph structure and node features.
- Score: 37.318961625795204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How can we enhance the node features acquired from Pretrained Models (PMs) to
better suit downstream graph learning tasks? Graph Neural Networks (GNNs) have
become the state-of-the-art approach for many high-impact, real-world graph
applications. For feature-rich graphs, a prevalent practice involves utilizing
a PM directly to generate features, without incorporating any domain adaptation
techniques. Nevertheless, this practice is suboptimal because the node features
extracted from PM are graph-agnostic and prevent GNNs from fully utilizing the
potential correlations between the graph structure and node features, leading
to a decline in GNNs performance. In this work, we seek to improve the node
features obtained from a PM for downstream graph tasks and introduce TOUCHUP-G,
which has several advantages. It is (a) General: applicable to any downstream
graph task, including link prediction which is often employed in recommender
systems; (b) Multi-modal: able to improve raw features of any modality (e.g.
images, texts, audio); (c) Principled: it is closely related to a novel metric,
feature homophily, which we propose to quantify the potential correlations
between the graph structure and node features and we show that TOUCHUP-G can
effectively shrink the discrepancy between the graph structure and node
features; (d) Effective: achieving state-of-the-art results on four real-world
datasets spanning different tasks and modalities.
Related papers
- MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure [8.00268216176428]
Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing and learning representations from graph-structured data.
A crucial prerequisite for the outstanding performance of GNNs is the availability of complete graph information.
This study proposes a mutual dual-stream graph neural network (MDS-GNN) which implements a mutual benefit learning between features and structure.
arXiv Detail & Related papers (2024-08-09T03:42:56Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks [2.7523980737007414]
We propose TADA, an efficient and effective front-mounted data augmentation framework for graph neural networks (GNNs) on high-degree graphs (HDGs)
Under the hood, TADA includes two key modules: (i) feature expansion with structure embeddings, and (ii) topology- and attribute-aware graph sparsification.
TADA considerably improves the predictive performance of mainstream GNN models on 8 real homophilic/heterophilic HDGs in terms of node classification.
arXiv Detail & Related papers (2024-06-08T14:14:19Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained
Heterogeneous Graph Neural Networks [24.435068514392487]
HetGPT is a post-training prompting framework for graph neural networks.
It improves the performance of state-of-the-art HGNNs on semi-supervised node classification.
arXiv Detail & Related papers (2023-10-23T19:35:57Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.