MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure
- URL: http://arxiv.org/abs/2408.04845v1
- Date: Fri, 9 Aug 2024 03:42:56 GMT
- Title: MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure
- Authors: Peng Yuan, Peng Tang,
- Abstract summary: Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing and learning representations from graph-structured data.
A crucial prerequisite for the outstanding performance of GNNs is the availability of complete graph information.
This study proposes a mutual dual-stream graph neural network (MDS-GNN) which implements a mutual benefit learning between features and structure.
- Score: 8.00268216176428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing and learning representations from graph-structured data. A crucial prerequisite for the outstanding performance of GNNs is the availability of complete graph information, i.e., node features and graph structure, which is frequently unmet in real-world scenarios since graphs are often incomplete due to various uncontrollable factors. Existing approaches only focus on dealing with either incomplete features or incomplete structure, which leads to performance loss inevitably. To address this issue, this study proposes a mutual dual-stream graph neural network (MDS-GNN), which implements a mutual benefit learning between features and structure. Its main ideas are as follows: a) reconstructing the missing node features based on the initial incomplete graph structure; b) generating an augmented global graph based on the reconstructed node features, and propagating the incomplete node features on this global graph; and c) utilizing contrastive learning to make the dual-stream process mutually benefit from each other. Extensive experiments on six real-world datasets demonstrate the effectiveness of our proposed MDS-GNN on incomplete graphs.
Related papers
- Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning.
We propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN)
arXiv Detail & Related papers (2024-05-17T08:50:00Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - T2-GNN: Graph Neural Networks for Graphs with Incomplete Features and
Structure via Teacher-Student Distillation [65.43245616105052]
Graph Neural Networks (GNNs) have been a prevailing technique for tackling various analysis tasks on graph data.
In this paper, we propose a general GNN framework based on teacher-student distillation to improve the performance of GNNs on incomplete graphs.
arXiv Detail & Related papers (2022-12-24T13:49:44Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
Graph Neural Networks (GNNs) have attracted increasing attention in recent years.
Recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph.
We propose a novel framework for semi-supervised classification.
arXiv Detail & Related papers (2022-12-04T06:17:11Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - Incomplete Graph Representation and Learning via Partial Graph Neural
Networks [7.227805463462352]
In many applications, graph may be coming in an incomplete form where attributes of graph nodes are partially unknown/missing.
Existing GNNs are generally designed on complete graphs which can not deal with attribute-incomplete graph data directly.
We develop a novel partial aggregation based GNNs, named Partial Graph Neural Networks (PaGNNs) for attribute-incomplete graph representation and learning.
arXiv Detail & Related papers (2020-03-23T08:29:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.