Fairness and Bias in Algorithmic Hiring: a Multidisciplinary Survey
- URL: http://arxiv.org/abs/2309.13933v3
- Date: Tue, 24 Sep 2024 16:18:51 GMT
- Title: Fairness and Bias in Algorithmic Hiring: a Multidisciplinary Survey
- Authors: Alessandro Fabris, Nina Baranowska, Matthew J. Dennis, David Graus, Philipp Hacker, Jorge Saldivar, Frederik Zuiderveen Borgesius, Asia J. Biega,
- Abstract summary: This survey caters to practitioners and researchers with a balanced and integrated coverage of systems, biases, measures, mitigation strategies, datasets, and legal aspects of algorithmic hiring and fairness.
Our work supports a contextualized understanding and governance of this technology by highlighting current opportunities and limitations, providing recommendations for future work to ensure shared benefits for all stakeholders.
- Score: 43.463169774689646
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Employers are adopting algorithmic hiring technology throughout the recruitment pipeline. Algorithmic fairness is especially applicable in this domain due to its high stakes and structural inequalities. Unfortunately, most work in this space provides partial treatment, often constrained by two competing narratives, optimistically focused on replacing biased recruiter decisions or pessimistically pointing to the automation of discrimination. Whether, and more importantly what types of, algorithmic hiring can be less biased and more beneficial to society than low-tech alternatives currently remains unanswered, to the detriment of trustworthiness. This multidisciplinary survey caters to practitioners and researchers with a balanced and integrated coverage of systems, biases, measures, mitigation strategies, datasets, and legal aspects of algorithmic hiring and fairness. Our work supports a contextualized understanding and governance of this technology by highlighting current opportunities and limitations, providing recommendations for future work to ensure shared benefits for all stakeholders.
Related papers
- Why Fair Automated Hiring Systems Breach EU Non-Discrimination Law [0.0]
Employment selection processes that use automated hiring systems based on machine learning are becoming increasingly commonplace.
Algorithmic fairness and algorithmic non-discrimination are not the same.
This article examines a conflict between the two: whether such hiring systems are compliant with EU non-discrimination law.
arXiv Detail & Related papers (2023-11-07T11:31:00Z) - Approaches to the Algorithmic Allocation of Public Resources: A
Cross-disciplinary Review [0.0]
We performed a cross disciplinary literature review to understand approaches taken for different areas of algorithmic allocation.
We analyzed the 75 papers from the lenses of optimization goals, techniques, interpretability, flexibility, bias, ethical considerations, and performance.
We found considerable potential for performance gains, with optimization techniques often decreasing waiting times and increasing success rate by as much as 50%.
arXiv Detail & Related papers (2023-10-10T09:46:01Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Algorithmic Fairness in Business Analytics: Directions for Research and
Practice [24.309795052068388]
This paper offers a forward-looking, BA-focused review of algorithmic fairness.
We first review the state-of-the-art research on sources and measures of bias, as well as bias mitigation algorithms.
We then provide a detailed discussion of the utility-fairness relationship, emphasizing that the frequent assumption of a trade-off between these two constructs is often mistaken or short-sighted.
arXiv Detail & Related papers (2022-07-22T10:21:38Z) - Algorithmic Fairness Datasets: the Story so Far [68.45921483094705]
Data-driven algorithms are studied in diverse domains to support critical decisions, directly impacting people's well-being.
A growing community of researchers has been investigating the equity of existing algorithms and proposing novel ones, advancing the understanding of risks and opportunities of automated decision-making for historically disadvantaged populations.
Progress in fair Machine Learning hinges on data, which can be appropriately used only if adequately documented.
Unfortunately, the algorithmic fairness community suffers from a collective data documentation debt caused by a lack of information on specific resources (opacity) and scatteredness of available information (sparsity)
arXiv Detail & Related papers (2022-02-03T17:25:46Z) - A Framework for Fairness: A Systematic Review of Existing Fair AI
Solutions [4.594159253008448]
A large portion of fairness research has gone to producing tools that machine learning practitioners can use to audit for bias while designing their algorithms.
There is a lack of application of these fairness solutions in practice.
This review provides an in-depth summary of the algorithmic bias issues that have been defined and the fairness solution space that has been proposed.
arXiv Detail & Related papers (2021-12-10T17:51:20Z) - Statistical discrimination in learning agents [64.78141757063142]
Statistical discrimination emerges in agent policies as a function of both the bias in the training population and of agent architecture.
We show that less discrimination emerges with agents that use recurrent neural networks, and when their training environment has less bias.
arXiv Detail & Related papers (2021-10-21T18:28:57Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
We study the problem of fairness for the task of edge prediction in graphs.
We propose an embedding-agnostic repairing procedure for the adjacency matrix of an arbitrary graph with a trade-off between the group and individual fairness.
arXiv Detail & Related papers (2020-10-30T15:33:13Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z) - Public Bayesian Persuasion: Being Almost Optimal and Almost Persuasive [57.47546090379434]
We study the public persuasion problem in the general setting with: (i) arbitrary state spaces; (ii) arbitrary action spaces; (iii) arbitrary sender's utility functions.
We provide a quasi-polynomial time bi-criteria approximation algorithm for arbitrary public persuasion problems that, in specific settings, yields a QPTAS.
arXiv Detail & Related papers (2020-02-12T18:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.