SPOTS: Stable Placement of Objects with Reasoning in Semi-Autonomous
Teleoperation Systems
- URL: http://arxiv.org/abs/2309.13937v1
- Date: Mon, 25 Sep 2023 08:13:49 GMT
- Title: SPOTS: Stable Placement of Objects with Reasoning in Semi-Autonomous
Teleoperation Systems
- Authors: Joonhyung Lee, Sangbeom Park, Jeongeun Park, Kyungjae Lee, Sungjoon
Choi
- Abstract summary: We focus on two aspects of the place task: stability robustness and contextual reasonableness of object placements.
Our proposed method combines simulation-driven physical stability verification via real-to-sim and the semantic reasoning capability of large language models.
- Score: 12.180724520887853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pick-and-place is one of the fundamental tasks in robotics research. However,
the attention has been mostly focused on the ``pick'' task, leaving the
``place'' task relatively unexplored. In this paper, we address the problem of
placing objects in the context of a teleoperation framework. Particularly, we
focus on two aspects of the place task: stability robustness and contextual
reasonableness of object placements. Our proposed method combines
simulation-driven physical stability verification via real-to-sim and the
semantic reasoning capability of large language models. In other words, given
place context information (e.g., user preferences, object to place, and current
scene information), our proposed method outputs a probability distribution over
the possible placement candidates, considering the robustness and
reasonableness of the place task. Our proposed method is extensively evaluated
in two simulation and one real world environments and we show that our method
can greatly increase the physical plausibility of the placement as well as
contextual soundness while considering user preferences.
Related papers
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - ShapeGrasp: Zero-Shot Task-Oriented Grasping with Large Language Models through Geometric Decomposition [8.654140442734354]
Task-oriented grasping of unfamiliar objects is a necessary skill for robots in dynamic in-home environments.
We present a novel zero-shot task-oriented grasping method leveraging a geometric decomposition of the target object into simple convex shapes.
Our approach employs minimal essential information - the object's name and the intended task - to facilitate zero-shot task-oriented grasping.
arXiv Detail & Related papers (2024-03-26T19:26:53Z) - Physical Reasoning and Object Planning for Household Embodied Agents [19.88210708022216]
We introduce the CommonSense Object Affordance Task (COAT), a novel framework designed to analyze reasoning capabilities in commonsense scenarios.
COAT offers insights into the complexities of practical decision-making in real-world environments.
Our contributions include insightful human preference mappings for all three factors and four extensive QA datasets.
arXiv Detail & Related papers (2023-11-22T18:32:03Z) - Clarify When Necessary: Resolving Ambiguity Through Interaction with LMs [58.620269228776294]
We propose a task-agnostic framework for resolving ambiguity by asking users clarifying questions.
We evaluate systems across three NLP applications: question answering, machine translation and natural language inference.
We find that intent-sim is robust, demonstrating improvements across a wide range of NLP tasks and LMs.
arXiv Detail & Related papers (2023-11-16T00:18:50Z) - Rotating Features for Object Discovery [74.1465486264609]
We present Rotating Features, a generalization of complex-valued features to higher dimensions, and a new evaluation procedure for extracting objects from distributed representations.
Together, these advancements enable us to scale distributed object-centric representations from simple toy to real-world data.
arXiv Detail & Related papers (2023-06-01T12:16:26Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - A Bayesian Treatment of Real-to-Sim for Deformable Object Manipulation [59.29922697476789]
We propose a novel methodology for extracting state information from image sequences via a technique to represent the state of a deformable object as a distribution embedding.
Our experiments confirm that we can estimate posterior distributions of physical properties, such as elasticity, friction and scale of highly deformable objects, such as cloth and ropes.
arXiv Detail & Related papers (2021-12-09T17:50:54Z) - Predicting Stable Configurations for Semantic Placement of Novel Objects [37.18437299513799]
Our goal is to enable robots to repose previously unseen objects according to learned semantic relationships in novel environments.
We build our models and training from the ground up to be tightly integrated with our proposed planning algorithm for semantic placement of unknown objects.
Our approach enables motion planning for semantic rearrangement of unknown objects in scenes with varying geometry from only RGB-D sensing.
arXiv Detail & Related papers (2021-08-26T23:05:05Z) - Towards Robotic Assembly by Predicting Robust, Precise and Task-oriented
Grasps [17.07993278175686]
We propose a method to optimize for grasp, precision, and task performance by learning three cascaded networks.
We evaluate our method in simulation on three common assembly tasks: inserting gears onto pegs, aligning brackets into corners, and inserting shapes into slots.
arXiv Detail & Related papers (2020-11-04T18:29:01Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.