Single Image Test-Time Adaptation for Segmentation
- URL: http://arxiv.org/abs/2309.14052v2
- Date: Tue, 2 Jul 2024 19:34:23 GMT
- Title: Single Image Test-Time Adaptation for Segmentation
- Authors: Klara Janouskova, Tamir Shor, Chaim Baskin, Jiri Matas,
- Abstract summary: This work explores adapting segmentation models to a single unlabelled image with no other data available at test-time.
In particular, this work focuses on adaptation by optimizing self-supervised losses at test-time.
Our additions to the baselines result in a 3.51 and 3.28 % increase over non-adapted baselines.
- Score: 22.600586011303363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-Time Adaptation (TTA) methods improve the robustness of deep neural networks to domain shift on a variety of tasks such as image classification or segmentation. This work explores adapting segmentation models to a single unlabelled image with no other data available at test-time. In particular, this work focuses on adaptation by optimizing self-supervised losses at test-time. Multiple baselines based on different principles are evaluated under diverse conditions and a novel adversarial training is introduced for adaptation with mask refinement. Our additions to the baselines result in a 3.51 and 3.28 % increase over non-adapted baselines, without these improvements, the increase would be 1.7 and 2.16 % only.
Related papers
- Enhancing Test Time Adaptation with Few-shot Guidance [35.13317598777832]
Deep neural networks often encounter significant performance drops while facing with domain shifts between training (source) and test (target) data.
Test Time Adaptation (TTA) methods have been proposed to adapt pre-trained source model to handle out-of-distribution streaming target data.
We develop Few-Shot Test Time Adaptation (FS-TTA), a novel and practical setting that utilizes a few-shot support set on top of TTA.
arXiv Detail & Related papers (2024-09-02T15:50:48Z) - Pay Attention to the Atlas: Atlas-Guided Test-Time Adaptation Method for
Robust 3D Medical Image Segmentation [16.606821084149406]
Convolutional neural networks (CNNs) often suffer from poor performance when tested on target data that differs from the training (source) data distribution.
We propose a novel atlas-guided test-time adaptation (TTA) method for robust 3D medical image segmentation, called AdaAtlas.
arXiv Detail & Related papers (2023-07-02T22:08:24Z) - Train/Test-Time Adaptation with Retrieval [129.8579208970529]
We introduce Train/Test-Time Adaptation with Retrieval ($rm T3AR$), a method to adapt models both at train and test time.
$rm T3AR$ adapts a given model to the downstream task using refined pseudo-labels and a self-supervised contrastive objective function.
Thanks to the retrieval module, our method gives the user or service provider the possibility to improve model adaptation on the downstream task.
arXiv Detail & Related papers (2023-03-25T02:44:57Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
Domain adaptation is effective in image classification tasks where obtaining sufficient label data is challenging.
We propose a novel method, named SELDA, for stacking ensemble learning via extending three domain adaptation methods.
The experimental results using Age-Related Eye Disease Study (AREDS) benchmark ophthalmic dataset demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-09-27T14:19:00Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Test-Time Adaptation with Shape Moments for Image Segmentation [16.794050614196916]
We investigate test-time single-subject adaptation for segmentation.
We propose a Shape-guided Entropy Minimization objective for tackling this task.
We show the potential of integrating various shape priors to guide adaptation to plausible solutions.
arXiv Detail & Related papers (2022-05-16T20:47:13Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
Adapting the source model to target data distribution at test-time is an efficient solution for the data-shift problem.
We propose a new framework called Adaptive UNet where each convolutional block is equipped with an adaptive batch normalization layer.
During test-time, the model takes in just the new test image and generates a domain code to adapt the features of source model according to the test data.
arXiv Detail & Related papers (2022-03-10T18:51:29Z) - MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption [69.76837484008033]
An unresolved problem in Deep Learning is the ability of neural networks to cope with domain shifts during test-time.
We combine meta-learning, self-supervision and test-time training to learn to adapt to unseen test distributions.
Our approach significantly improves the state-of-the-art results on the CIFAR-10-Corrupted image classification benchmark.
arXiv Detail & Related papers (2021-03-30T09:33:38Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
In this work, we consider the problem setting of domain generalization, where the training data are structured into domains and there may be multiple test time shifts.
We introduce the framework of adaptive risk minimization (ARM), in which models are directly optimized for effective adaptation to shift by learning to adapt on the training domains.
arXiv Detail & Related papers (2020-07-06T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.