Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification
- URL: http://arxiv.org/abs/2209.13420v1
- Date: Tue, 27 Sep 2022 14:19:00 GMT
- Title: Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification
- Authors: Yeganeh Madadi, Vahid Seydi, Jian Sun, Edward Chaum, and Siamak
Yousefi
- Abstract summary: Domain adaptation is effective in image classification tasks where obtaining sufficient label data is challenging.
We propose a novel method, named SELDA, for stacking ensemble learning via extending three domain adaptation methods.
The experimental results using Age-Related Eye Disease Study (AREDS) benchmark ophthalmic dataset demonstrate the effectiveness of the proposed model.
- Score: 61.656149405657246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation is an attractive approach given the availability of a large
amount of labeled data with similar properties but different domains. It is
effective in image classification tasks where obtaining sufficient label data
is challenging. We propose a novel method, named SELDA, for stacking ensemble
learning via extending three domain adaptation methods for effectively solving
real-world problems. The major assumption is that when base domain adaptation
models are combined, we can obtain a more accurate and robust model by
exploiting the ability of each of the base models. We extend Maximum Mean
Discrepancy (MMD), Low-rank coding, and Correlation Alignment (CORAL) to
compute the adaptation loss in three base models. Also, we utilize a two-fully
connected layer network as a meta-model to stack the output predictions of
these three well-performing domain adaptation models to obtain high accuracy in
ophthalmic image classification tasks. The experimental results using
Age-Related Eye Disease Study (AREDS) benchmark ophthalmic dataset demonstrate
the effectiveness of the proposed model.
Related papers
- Few-Shot Domain Adaptive Object Detection for Microscopic Images [7.993453987882035]
Few-shot domain adaptive object detection (FSDAOD) addresses the challenge of adapting object detectors to target domains with limited labeled data.
Medical datasets exhibit high class imbalance and background similarity, leading to increased false positives and lower mean Average Precision (map) in target domains.
Our contributions include a domain adaptive class balancing strategy for few-shot scenarios, multi-layer instance-level inter and intra-domain alignment, and an instance-level classification loss.
arXiv Detail & Related papers (2024-07-10T13:11:58Z) - FissionFusion: Fast Geometric Generation and Hierarchical Souping for Medical Image Analysis [0.7751705157998379]
The scarcity of well-annotated medical datasets requires leveraging transfer learning from broader datasets like ImageNet or pre-trained models like CLIP.
Model soups averages multiple fine-tuned models aiming to improve performance on In-Domain (ID) tasks and enhance robustness against Out-of-Distribution (OOD) datasets.
We propose a hierarchical merging approach that involves local and global aggregation of models at various levels.
arXiv Detail & Related papers (2024-03-20T06:48:48Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - T-ADAF: Adaptive Data Augmentation Framework for Image Classification
Network based on Tensor T-product Operator [0.0]
This paper proposes an Adaptive Data Augmentation Framework based on the tensor T-product Operator.
It triples one image data to be trained and gain the result from all these three images together with only less than 0.1% increase in the number of parameters.
Numerical experiments show that our data augmentation framework can improve the performance of original neural network model by 2%.
arXiv Detail & Related papers (2023-06-07T08:30:44Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Deep learning based domain adaptation for mitochondria segmentation on
EM volumes [5.682594415267948]
We present three unsupervised domain adaptation strategies to improve mitochondria segmentation in the target domain.
We propose a new training stopping criterion based on morphological priors obtained exclusively in the source domain.
In the absence of validation labels, monitoring our proposed morphology-based metric is an intuitive and effective way to stop the training process and select in average optimal models.
arXiv Detail & Related papers (2022-02-22T09:49:25Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.