Adapt then Unlearn: Exploiting Parameter Space Semantics for Unlearning
in Generative Adversarial Networks
- URL: http://arxiv.org/abs/2309.14054v1
- Date: Mon, 25 Sep 2023 11:36:20 GMT
- Title: Adapt then Unlearn: Exploiting Parameter Space Semantics for Unlearning
in Generative Adversarial Networks
- Authors: Piyush Tiwary, Atri Guha, Subhodip Panda, Prathosh A.P
- Abstract summary: This work is inspired by a crucial observation: the parameter space of GANs exhibits meaningful directions that can be leveraged to suppress specific undesired features.
Our proposed method, known as 'Adapt-then-Unlearn,' excels at unlearning such undesirable features while also maintaining the quality of generated samples.
This method unfolds in two stages: in the initial stage, we adapt the pre-trained GAN using negative samples provided by the user, while in the subsequent stage, we focus on unlearning the undesired feature.
- Score: 5.479797073162603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increased attention to regulating the outputs of deep generative models,
driven by growing concerns about privacy and regulatory compliance, has
highlighted the need for effective control over these models. This necessity
arises from instances where generative models produce outputs containing
undesirable, offensive, or potentially harmful content. To tackle this
challenge, the concept of machine unlearning has emerged, aiming to forget
specific learned information or to erase the influence of undesired data
subsets from a trained model. The objective of this work is to prevent the
generation of outputs containing undesired features from a pre-trained GAN
where the underlying training data set is inaccessible. Our approach is
inspired by a crucial observation: the parameter space of GANs exhibits
meaningful directions that can be leveraged to suppress specific undesired
features. However, such directions usually result in the degradation of the
quality of generated samples. Our proposed method, known as
'Adapt-then-Unlearn,' excels at unlearning such undesirable features while also
maintaining the quality of generated samples. This method unfolds in two
stages: in the initial stage, we adapt the pre-trained GAN using negative
samples provided by the user, while in the subsequent stage, we focus on
unlearning the undesired feature. During the latter phase, we train the
pre-trained GAN using positive samples, incorporating a repulsion regularizer.
This regularizer encourages the model's parameters to be away from the
parameters associated with the adapted model from the first stage while also
maintaining the quality of generated samples. To the best of our knowledge, our
approach stands as first method addressing unlearning in GANs. We validate the
effectiveness of our method through comprehensive experiments.
Related papers
- Upweighting Easy Samples in Fine-Tuning Mitigates Forgetting [15.251425165987987]
Fine-tuning a pre-trained model on a downstream task often degrades its original capabilities.
We propose a sample weighting scheme for the fine-tuning data based on the pre-trained model's losses.
We empirically demonstrate the efficacy of our method on both language and vision tasks.
arXiv Detail & Related papers (2025-02-05T00:49:59Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
We introduce DIAG, a training-free Diffusion-based In-distribution Anomaly Generation pipeline for data augmentation.
Unlike conventional image generation techniques, we implement a human-in-the-loop pipeline, where domain experts provide multimodal guidance to the model.
We demonstrate the efficacy and versatility of DIAG with respect to state-of-the-art data augmentation approaches on the challenging KSDD2 dataset.
arXiv Detail & Related papers (2024-07-04T14:28:52Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Adaptive Retention & Correction: Test-Time Training for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Generator Born from Classifier [66.56001246096002]
We aim to reconstruct an image generator, without relying on any data samples.
We propose a novel learning paradigm, in which the generator is trained to ensure that the convergence conditions of the network parameters are satisfied.
arXiv Detail & Related papers (2023-12-05T03:41:17Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
One-shot federated learning (OSFL) has gained attention in recent years due to its low communication cost.
In this paper, we explore the novel opportunities that diffusion models bring to OSFL and propose FedCADO.
FedCADO generates data that complies with clients' distributions and subsequently training the aggregated model on the server.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Bridging the Gap: Addressing Discrepancies in Diffusion Model Training
for Classifier-Free Guidance [1.6804613362826175]
Diffusion models have emerged as a pivotal advancement in generative models.
In this paper we aim to underscore a discrepancy between conventional training methods and the desired conditional sampling behavior.
We introduce an updated loss function that better aligns training objectives with sampling behaviors.
arXiv Detail & Related papers (2023-11-02T02:03:12Z) - Progressive Feature Adjustment for Semi-supervised Learning from
Pretrained Models [39.42802115580677]
Semi-supervised learning (SSL) can leverage both labeled and unlabeled data to build a predictive model.
Recent literature suggests that naively applying state-of-the-art SSL with a pretrained model fails to unleash the full potential of training data.
We propose to use pseudo-labels from the unlabelled data to update the feature extractor that is less sensitive to incorrect labels.
arXiv Detail & Related papers (2023-09-09T01:57:14Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - InitialGAN: A Language GAN with Completely Random Initialization [7.642043456676739]
Generative Adversarial Networks (GANs) are shown to have potential to tackle the notorious exposure bias problem.
Existing language GANs adopt estimators like REINFORCE or continuous relaxations to model word probabilities.
In this work, we present two techniques to tackle these problems: dropout sampling and fully normalized LSTM.
arXiv Detail & Related papers (2022-08-04T08:56:04Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Paired Examples as Indirect Supervision in Latent Decision Models [109.76417071249945]
We introduce a way to leverage paired examples that provide stronger cues for learning latent decisions.
We apply our method to improve compositional question answering using neural module networks on the DROP dataset.
arXiv Detail & Related papers (2021-04-05T03:58:30Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
controllable generation with GANs remains a challenging research problem.
We propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training.
Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder.
arXiv Detail & Related papers (2020-07-17T21:50:35Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.