論文の概要: Exploring the Impact of Serverless Computing on Peer To Peer Training
Machine Learning
- arxiv url: http://arxiv.org/abs/2309.14139v1
- Date: Mon, 25 Sep 2023 13:51:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 15:18:31.330381
- Title: Exploring the Impact of Serverless Computing on Peer To Peer Training
Machine Learning
- Title(参考訳): サーバレスコンピューティングがピアツーピアトレーニング機械学習に与える影響を探求する
- Authors: Amine Barral, Ranim Trabelsi, Fehmi Jaafar, Fabio Petrillo
- Abstract要約: 分散トレーニングのためのサーバーレスコンピューティングとP2Pネットワークを組み合わせた新しいアーキテクチャを導入する。
その結果,従来のP2P分散学習法と比較して97.34%の改善がみられた。
コストタイムのトレードオフにもかかわらず、サーバーレスのアプローチは依然として有望である。
- 参考スコア(独自算出の注目度): 0.3441021278275805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing demand for computational power in big data and machine
learning has driven the development of distributed training methodologies.
Among these, peer-to-peer (P2P) networks provide advantages such as enhanced
scalability and fault tolerance. However, they also encounter challenges
related to resource consumption, costs, and communication overhead as the
number of participating peers grows. In this paper, we introduce a novel
architecture that combines serverless computing with P2P networks for
distributed training and present a method for efficient parallel gradient
computation under resource constraints.
Our findings show a significant enhancement in gradient computation time,
with up to a 97.34\% improvement compared to conventional P2P distributed
training methods. As for costs, our examination confirmed that the serverless
architecture could incur higher expenses, reaching up to 5.4 times more than
instance-based architectures. It is essential to consider that these higher
costs are associated with marked improvements in computation time, particularly
under resource-constrained scenarios. Despite the cost-time trade-off, the
serverless approach still holds promise due to its pay-as-you-go model.
Utilizing dynamic resource allocation, it enables faster training times and
optimized resource utilization, making it a promising candidate for a wide
range of machine learning applications.
- Abstract(参考訳): ビッグデータと機械学習における計算能力の需要の増加は、分散トレーニング方法論の開発を促した。
これらのうちピアツーピア(P2P)ネットワークは拡張スケーラビリティや耐障害性などの利点を提供する。
しかし、参加する仲間の数が増えるにつれて、リソースの消費、コスト、コミュニケーションのオーバーヘッドといった問題にも直面する。
本稿では,分散トレーニングのためのサーバーレスコンピューティングとp2pネットワークを組み合わせた新しいアーキテクチャを提案し,資源制約下での効率的な並列勾配計算手法を提案する。
従来のP2P分散学習法と比較して, 最大97.34 %の改善がみられた。
コストに関しては、サーバーレスアーキテクチャは、インスタンスベースのアーキテクチャの最大5.4倍の費用を被る可能性があることを確認しました。
これらの高いコストは、特にリソース制約のあるシナリオにおいて、計算時間を大幅に改善することと関連していると考えることが不可欠である。
コストタイムのトレードオフにもかかわらず、サーバーレスのアプローチは依然として有望である。
動的リソース割り当てを利用することで、トレーニング時間の短縮とリソース利用の最適化が可能になり、幅広い機械学習アプリケーションにとって有望な候補となる。
関連論文リスト
- SFPrompt: Communication-Efficient Split Federated Fine-Tuning for Large Pre-Trained Models over Resource-Limited Devices [10.10998320880871]
SFPromptは、フェデレーション設定に適したプライバシー保護のための微調整手法である。
分割学習と連合学習を組み合わせてこれらの課題に対処する。
SFPromptは、フェデレートされた完全な微調整アプローチとして、競争力のあるパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-07-24T04:22:37Z) - Scalable Federated Unlearning via Isolated and Coded Sharding [76.12847512410767]
フェデレートされたアンラーニングは、クライアントレベルのデータエフェクトを削除するための有望なパラダイムとして登場した。
本稿では,分散シャーディングと符号化コンピューティングに基づく,スケーラブルなフェデレーション・アンラーニング・フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T08:41:45Z) - A Review of Deep Reinforcement Learning in Serverless Computing:
Function Scheduling and Resource Auto-Scaling [2.0722667822370386]
本稿では、サーバーレスコンピューティングにおけるDeep Reinforcement Learning(DRL)技術の適用について、包括的なレビューを行う。
DRLをサーバレスコンピューティングに適用する最近の研究の体系的なレビューが、さまざまなアルゴリズム、モデル、パフォーマンスについて紹介されている。
分析の結果,DRLは環境から学習・適応する能力を有しており,機能スケジューリングと資源スケーリングの効率化に期待できる結果が得られた。
論文 参考訳(メタデータ) (2023-10-05T09:26:04Z) - Architecting Peer-to-Peer Serverless Distributed Machine Learning
Training for Improved Fault Tolerance [1.495380389108477]
サーバレスコンピューティングは、計算単位として関数を使用するクラウドコンピューティングの新しいパラダイムである。
ワークロードを分散することにより、分散機械学習はトレーニングプロセスを高速化し、より複雑なモデルをトレーニングできるようにする。
本稿では、分散機械学習トレーニングにおけるサーバーレスコンピューティングの利用について検討し、P2Pアーキテクチャの性能とパラメータサーバアーキテクチャを比較した。
論文 参考訳(メタデータ) (2023-02-27T17:38:47Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
大規模な機械学習モデルは、幅広い分野に進歩をもたらしている。
これらのモデルの多くは、単一のマシンでトレーニングするには大きすぎるため、複数のデバイスに分散する必要がある。
スループットやブロッキングレートといったユーザクリティカルな指標に対して,並列化の最大化が準最適であることを示す。
論文 参考訳(メタデータ) (2023-01-31T17:41:07Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
複雑な実世界の環境でエージェントを訓練することは、桁違いに高速であることを示す。
強化学習の手法を新しい領域に適用することにより、興味深く非自明な解を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-11-23T19:17:20Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
機械学習(ML)は、巨大なIoT(Internet of Things)ベースのインテリジェントでユビキタスなコンピューティングのビッグデータ駆動モデリングと分析のための重要なテクニックである。
急成長するアプリケーションやデータ量にとって、分散学習は有望な新興パラダイムである。
本稿では,多くのユーザデバイスに分散した分散システム上でMLモデルをトレーニングする問題について検討する。
論文 参考訳(メタデータ) (2022-02-07T15:04:15Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
本稿では,デバイス間のロードバランシングのための新しいデバイス・ツー・デバイス(D2D)支援型符号化学習手法(D2D-CFL)を提案する。
最小処理時間を達成するための最適圧縮率を導出し、収束時間との接続を確立する。
提案手法は,ユーザが継続的にトレーニングデータを生成するリアルタイム協調アプリケーションに有用である。
論文 参考訳(メタデータ) (2021-11-26T18:44:59Z) - HeterPS: Distributed Deep Learning With Reinforcement Learning Based
Scheduling in Heterogeneous Environments [37.55572042288321]
ニューラルネットワーク(DNN)のトレーニングプロセスは、多くのスパースな特徴を持つ大規模な入力データを扱うのが一般的である。
Paddle-HeterPSは分散アーキテクチャとReinforcement Reinforcement (RL)ベースのスケジューリング手法で構成されている。
パドル・ヘターPSはスループット(14.5倍高い)と金銭的コスト(312.3%小さい)で最先端のアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2021-11-20T17:09:15Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
機械学習アルゴリズムは、人工知能(AI)モデルをトレーニングするために、ネットワークエッジにデプロイされる。
本稿では,パラメータ(計算負荷)割り当てと帯域幅割り当ての新しい共同設計に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-10T05:52:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。