Extragradient Type Methods for Riemannian Variational Inequality Problems
- URL: http://arxiv.org/abs/2309.14155v2
- Date: Sat, 1 Jun 2024 11:40:49 GMT
- Title: Extragradient Type Methods for Riemannian Variational Inequality Problems
- Authors: Zihao Hu, Guanghui Wang, Xi Wang, Andre Wibisono, Jacob Abernethy, Molei Tao,
- Abstract summary: We show that the average-rate convergence of both REG and RPEG is $Oleft(frac1Tright)$, aligning with in the 2020ean case.
Results are enabled by addressing judiciously the holonomy effect so additional observations can be reduced.
- Score: 25.574847201669144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Riemannian convex optimization and minimax optimization have recently drawn considerable attention. Their appeal lies in their capacity to adeptly manage the non-convexity of the objective function as well as constraints inherent in the feasible set in the Euclidean sense. In this work, we delve into monotone Riemannian Variational Inequality Problems (RVIPs), which encompass both Riemannian convex optimization and minimax optimization as particular cases. In the context of Euclidean space, it is established that the last-iterates of both the extragradient (EG) and past extragradient (PEG) methods converge to the solution of monotone variational inequality problems at a rate of $O\left(\frac{1}{\sqrt{T}}\right)$ (Cai et al., 2022). However, analogous behavior on Riemannian manifolds remains an open question. To bridge this gap, we introduce the Riemannian extragradient (REG) and Riemannian past extragradient (RPEG) methods. We demonstrate that both exhibit $O\left(\frac{1}{\sqrt{T}}\right)$ last-iterate convergence. Additionally, we show that the average-iterate convergence of both REG and RPEG is $O\left(\frac{1}{{T}}\right)$, aligning with observations in the Euclidean case (Mokhtari et al., 2020). These results are enabled by judiciously addressing the holonomy effect so that additional complications in Riemannian cases can be reduced and the Euclidean proof inspired by the performance estimation problem (PEP) technique or the sum-of-squares (SOS) technique can be applied again.
Related papers
- Riemannian Bilevel Optimization [35.42472057648458]
We focus in particular on batch and gradient-based methods, with the explicit goal of avoiding second-order information.
We propose and analyze $mathrmRF2SA$, a method that leverages first-order gradient information.
We provide explicit convergence rates for reaching $epsilon$-stationary points under various setups.
arXiv Detail & Related papers (2024-05-22T20:49:01Z) - Convergence and Complexity Guarantee for Inexact First-order Riemannian Optimization Algorithms [18.425648833592312]
We show that tBMM converges to an $ilon$-stationary point within $O(epsilon-2)$.
Under a mild iteration, the results still hold when the subproblem is solved in iterations in each provided the total optimality gap is bounded.
arXiv Detail & Related papers (2024-05-05T22:53:14Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
We show that policies under study avoid strict saddle points / submanifolds with probability 1.
This result provides an important sanity check as it shows that, almost always, the limit state of an algorithm can only be a local minimizer.
arXiv Detail & Related papers (2023-11-04T11:12:24Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-max algorithms have been analyzed in the Euclidean setting.
We prove that the extraiteient (RCEG) method corrected lastrate convergence at a linear rate.
arXiv Detail & Related papers (2022-06-04T18:53:44Z) - Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable
Approach for Continuous Markov Random Fields [53.31927549039624]
We show that a piecewise discretization preserves better contrast from existing discretization problems.
We apply this theory to the problem of matching two images.
arXiv Detail & Related papers (2021-07-13T12:31:06Z) - Averaging on the Bures-Wasserstein manifold: dimension-free convergence
of gradient descent [15.136397170510834]
We prove new geodesic convexity results which provide stronger control of the iterates, a free convergence.
Our techniques also enable the analysis of two related notions of averaging, the entropically-regularized barycenter and the geometric median.
arXiv Detail & Related papers (2021-06-16T01:05:19Z) - Proximal Gradient Descent-Ascent: Variable Convergence under K{\L}
Geometry [49.65455534654459]
The finite descent-ascent parameters (GDA) has been widely applied to solve minimax optimization problems.
This paper fills such a gap by studying the convergence of the KL-Lized geometry.
arXiv Detail & Related papers (2021-02-09T05:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.