Federated Learning Under Restricted User Availability
- URL: http://arxiv.org/abs/2309.14176v1
- Date: Mon, 25 Sep 2023 14:40:27 GMT
- Title: Federated Learning Under Restricted User Availability
- Authors: Periklis Theodoropoulos, Konstantinos E. Nikolakakis and Dionysis
Kalogerias
- Abstract summary: Non-uniform availability or participation of users is unavoidable due to an adverse or environment.
We propose a new formulation of the FL problem which effectively captures and mitigates limited participation of data originating from infrequent, or restricted users.
Our experiments on synthetic and benchmark datasets show that the proposed approach significantly improved performance as compared with standard FL.
- Score: 3.0846824529023387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a decentralized machine learning framework that
enables collaborative model training while respecting data privacy. In various
applications, non-uniform availability or participation of users is unavoidable
due to an adverse or stochastic environment, the latter often being
uncontrollable during learning. Here, we posit a generic user selection
mechanism implementing a possibly randomized, stationary selection policy,
suggestively termed as a Random Access Model (RAM). We propose a new
formulation of the FL problem which effectively captures and mitigates limited
participation of data originating from infrequent, or restricted users, at the
presence of a RAM. By employing the Conditional Value-at-Risk (CVaR) over the
(unknown) RAM distribution, we extend the expected loss FL objective to a
risk-aware objective, enabling the design of an efficient training algorithm
that is completely oblivious to the RAM, and with essentially identical
complexity as FedAvg. Our experiments on synthetic and benchmark datasets show
that the proposed approach achieves significantly improved performance as
compared with standard FL, under a variety of setups.
Related papers
- Federated Learning for Misbehaviour Detection with Variational Autoencoders and Gaussian Mixture Models [0.2999888908665658]
Federated Learning (FL) has become an attractive approach to collaboratively train Machine Learning (ML) models.
This work proposes a novel unsupervised FL approach for the identification of potential misbehavior in vehicular environments.
We leverage the computing capabilities of public cloud services for model aggregation purposes.
arXiv Detail & Related papers (2024-05-16T08:49:50Z) - Reinforcement Learning as a Catalyst for Robust and Fair Federated
Learning: Deciphering the Dynamics of Client Contributions [6.318638597489423]
Reinforcement Federated Learning (RFL) is a novel framework that leverages deep reinforcement learning to adaptively optimize client contribution during aggregation.
In terms of robustness, RFL outperforms state-of-the-art methods, while maintaining comparable levels of fairness.
arXiv Detail & Related papers (2024-02-08T10:22:12Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - UFed-GAN: A Secure Federated Learning Framework with Constrained
Computation and Unlabeled Data [50.13595312140533]
We propose a novel framework of UFed-GAN: Unsupervised Federated Generative Adversarial Network, which can capture user-side data distribution without local classification training.
Our experimental results demonstrate the strong potential of UFed-GAN in addressing limited computational resources and unlabeled data while preserving privacy.
arXiv Detail & Related papers (2023-08-10T22:52:13Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Semi-Supervised Federated Learning with non-IID Data: Algorithm and
System Design [42.63120623012093]
Federated Learning (FL) allows edge devices (or clients) to keep data locally while simultaneously training a shared global model.
The distribution of the client's local training data is non-independent identically distributed (non-IID)
We present a robust semi-supervised FL system design, where the system aims to solve the problem of data availability and non-IID in FL.
arXiv Detail & Related papers (2021-10-26T03:41:48Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.