Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification
- URL: http://arxiv.org/abs/2310.19558v2
- Date: Wed, 3 Apr 2024 16:33:34 GMT
- Title: Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification
- Authors: Yiwei Li, Chien-Wei Huang, Shuai Wang, Chong-Yung Chi, Tony Q. S. Quek,
- Abstract summary: Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
- Score: 51.04894019092156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has been recognized as a rapidly growing research area, where the model is trained over massively distributed clients under the orchestration of a parameter server (PS) without sharing clients' data. This paper delves into a class of federated problems characterized by non-convex and non-smooth loss functions, that are prevalent in FL applications but challenging to handle due to their intricate non-convexity and non-smoothness nature and the conflicting requirements on communication efficiency and privacy protection. In this paper, we propose a novel federated primal-dual algorithm with bidirectional model sparsification tailored for non-convex and non-smooth FL problems, and differential privacy is applied for privacy guarantee. Its unique insightful properties and some privacy and convergence analyses are also presented as the FL algorithm design guidelines. Extensive experiments on real-world data are conducted to demonstrate the effectiveness of the proposed algorithm and much superior performance than some state-of-the-art FL algorithms, together with the validation of all the analytical results and properties.
Related papers
- FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Every Parameter Matters: Ensuring the Convergence of Federated Learning
with Dynamic Heterogeneous Models Reduction [22.567754688492414]
Cross-device Federated Learning (FL) faces significant challenges where low-end clients that could potentially make unique contributions are excluded from training large models due to their resource bottlenecks.
Recent research efforts have focused on model-heterogeneous FL, by extracting reduced-size models from the global model and applying them to local clients accordingly.
This paper presents a unifying framework for heterogeneous FL algorithms with online model extraction and provides a general convergence analysis for the first time.
arXiv Detail & Related papers (2023-10-12T19:07:58Z) - UNIDEAL: Curriculum Knowledge Distillation Federated Learning [17.817181326740698]
Federated Learning (FL) has emerged as a promising approach to enable collaborative learning among multiple clients.
In this paper, we present UNI, a novel FL algorithm specifically designed to tackle the challenges of cross-domain scenarios.
Our results demonstrate that UNI achieves superior performance in terms of both model accuracy and communication efficiency.
arXiv Detail & Related papers (2023-09-16T11:30:29Z) - Feature Matching Data Synthesis for Non-IID Federated Learning [7.740333805796447]
Federated learning (FL) trains neural networks on edge devices without collecting data at a central server.
This paper proposes a hard feature matching data synthesis (HFMDS) method to share auxiliary data besides local models.
For better privacy preservation, we propose a hard feature augmentation method to transfer real features towards the decision boundary.
arXiv Detail & Related papers (2023-08-09T07:49:39Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - A Theoretical Perspective on Differentially Private Federated Multi-task
Learning [12.935153199667987]
collaborative learning models need to be developed with respect to both privacy and utility concerns.
We propose a new federated multi-task for effective parameter transfer differential privacy to protect at the client level.
We are the first to provide both privacy utility guarantees for such a proposed algorithm.
arXiv Detail & Related papers (2020-11-14T00:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.