論文の概要: Parallelizing a 1-Dim Nagel-Schreckenberg Traffic Model
- arxiv url: http://arxiv.org/abs/2309.14311v1
- Date: Mon, 25 Sep 2023 17:30:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 14:29:57.436538
- Title: Parallelizing a 1-Dim Nagel-Schreckenberg Traffic Model
- Title(参考訳): 1次元Nagel-Schreckenberg交通モデル並列化
- Authors: Ramses van Zon, Marcelo Ponce
- Abstract要約: この課題はトロント大学のPHY1610 Scientific Computing for Physicistsの大学院のために作られた。
我々は,Nagel-Schreckenbergモデルを実装した既存のシリアルコードの,共有メモリ並列化および再現可能なバージョンの実装プロセスを通じて,学生を指導する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Nagel-Schreckenberg model is a stochastic one-dimensional traffic model.
In this assignment, we guide students through the process of implementing a
shared-memory parallel and reproducible version of an existing serial code that
implements this model, and to analyze its scaling behavior. One of the key
elements in this traffic model is the presence of randomness, without which it
would lack realistic phenomena such as traffic jams. Its implementation thus
requires techniques associated with Monte Carlo simulations and pseudo-random
number generation (PRNG). PRNGs are notoriously tricky to deal with in parallel
when combined with the requirement of reproducibility.
This assignment was created for the graduate course PHY1610 Scientific
Computing for Physicists at the University of Toronto, which had its origin in
the training program of the SciNet HPC Consortium, and is also very suitable
for other scientific disciplines. Several variations of the assignment have
been used over the years.
- Abstract(参考訳): nagel-schreckenbergモデルは確率的一次元交通モデルである。
この課題では,このモデルを実装した既存シリアルコードの共有メモリ並列および再現可能なバージョンを実装し,そのスケーリング動作を分析するプロセスを通じて学生を指導する。
この交通モデルにおける重要な要素の1つはランダム性の存在であり、交通渋滞のような現実的な現象を欠く。
そのため、モンテカルロシミュレーションや擬似ランダム数生成(PRNG)に関連する技術が必要である。
PRNGは再現性の要件と組み合わせることで、並列処理が難しいことで知られています。
この課題はトロント大学の大学院でPHY1610 Scientific Computing for Physicistsとして作られ、SciNet HPC Consortiumのトレーニングプログラムに起源を持ち、他の科学分野にも非常に適している。
長年にわたりいくつかのバリエーションが用いられてきた。
関連論文リスト
- Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - Learning to Simulate: Generative Metamodeling via Quantile Regression [2.2518304637809714]
我々は「シミュレーターの高速シミュレータ」を構築することを目的とした、生成メタモデリングと呼ばれる新しいメタモデリング概念を提案する。
一度構築すると、生成メタモデルは入力が特定されるとすぐに大量のランダム出力を生成することができる。
本稿では,QRGMM(quantile-regression-based generative metamodeling)という新しいアルゴリズムを提案し,その収束率と収束率について検討する。
論文 参考訳(メタデータ) (2023-11-29T16:46:24Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
我々は、量子ネットワークの並列シミュレーションの要件を特定し、最初の並列離散事象量子ネットワークシミュレータを開発する。
コントリビューションには、複数のプロセスに分散した共有量子情報を維持する量子状態マネージャの設計と開発が含まれています。
既存のシーケンシャルバージョンと並行してオープンソースツールとして,並列SeQUeNCeシミュレータをリリースする。
論文 参考訳(メタデータ) (2021-11-06T16:51:17Z) - Model-Parallel Model Selection for Deep Learning Systems [0.0]
機械学習(ML)トレーニングの非効率性は、ほとんどのユーザにとって最先端モデルの実用的使用を防止する。
多くのML実践者は、計算要求を複数のデバイスに分散させる方法として、並列性をモデル化している。
タスクとモデル並列性を組み合わせた新しい形式の「シャード並列性」を提案し、それをHydraという名前のフレームワークにパッケージ化する。
論文 参考訳(メタデータ) (2021-07-14T03:20:37Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
強化学習(Reinforcement Learning, RL)は、通常、単一ステップポリシーや単一ステップモデルの推定に関係している。
我々は、RLをシーケンスモデリング問題とみなし、高い報酬のシーケンスにつながる一連のアクションを予測することを目標としている。
論文 参考訳(メタデータ) (2021-06-03T17:58:51Z) - Automatic Graph Partitioning for Very Large-scale Deep Learning [4.472135966077758]
本研究では,自動ハイブリッド並列処理のためのRaNNC(Rapid Neural Network Connector)を提案する。
RaNNCは自動的にモデルをサブコンポーネントのセットに分割し、各サブコンポーネントがデバイスメモリに適合するようにします。
RaNNCはMegatron-LMよりも5倍大きなモデルのトレーニングに成功し、RaNNCのトレーニングスループットは、同じモデルを事前トレーニングする際にMegatron-LMに匹敵するものでした。
論文 参考訳(メタデータ) (2021-03-30T04:26:04Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。