Survey of Social Bias in Vision-Language Models
- URL: http://arxiv.org/abs/2309.14381v1
- Date: Sun, 24 Sep 2023 15:34:56 GMT
- Title: Survey of Social Bias in Vision-Language Models
- Authors: Nayeon Lee, Yejin Bang, Holy Lovenia, Samuel Cahyawijaya, Wenliang
Dai, Pascale Fung
- Abstract summary: Survey aims to provide researchers with a high-level insight into the similarities and differences of social bias studies in pre-trained models across NLP, CV, and VL.
The findings and recommendations presented here can benefit the ML community, fostering the development of fairer and non-biased AI models.
- Score: 65.44579542312489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the rapid advancement of machine learning (ML) models,
particularly transformer-based pre-trained models, has revolutionized Natural
Language Processing (NLP) and Computer Vision (CV) fields. However, researchers
have discovered that these models can inadvertently capture and reinforce
social biases present in their training datasets, leading to potential social
harms, such as uneven resource allocation and unfair representation of specific
social groups. Addressing these biases and ensuring fairness in artificial
intelligence (AI) systems has become a critical concern in the ML community.
The recent introduction of pre-trained vision-and-language (VL) models in the
emerging multimodal field demands attention to the potential social biases
present in these models as well. Although VL models are susceptible to social
bias, there is a limited understanding compared to the extensive discussions on
bias in NLP and CV. This survey aims to provide researchers with a high-level
insight into the similarities and differences of social bias studies in
pre-trained models across NLP, CV, and VL. By examining these perspectives, the
survey aims to offer valuable guidelines on how to approach and mitigate social
bias in both unimodal and multimodal settings. The findings and recommendations
presented here can benefit the ML community, fostering the development of
fairer and non-biased AI models in various applications and research endeavors.
Related papers
- Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
Large Language Models (LLMs) have revolutionized natural language processing, but their susceptibility to biases poses significant challenges.
This comprehensive review examines the landscape of bias in LLMs, from its origins to current mitigation strategies.
Ethical and legal implications of biased LLMs are discussed, emphasizing potential harms in real-world applications such as healthcare and criminal justice.
arXiv Detail & Related papers (2024-11-16T23:54:53Z) - Social Debiasing for Fair Multi-modal LLMs [55.8071045346024]
Multi-modal Large Language Models (MLLMs) have advanced significantly, offering powerful vision-language understanding capabilities.
However, these models often inherit severe social biases from their training datasets, leading to unfair predictions based on attributes like race and gender.
This paper addresses the issue of social biases in MLLMs by i) Introducing a comprehensive Counterfactual dataset with Multiple Social Concepts (CMSC) and ii) Proposing an Anti-Stereotype Debiasing strategy (ASD)
arXiv Detail & Related papers (2024-08-13T02:08:32Z) - Collective Constitutional AI: Aligning a Language Model with Public Input [20.95333081841239]
There is growing consensus that language model (LM) developers should not be the sole deciders of LM behavior.
We present Collective Constitutional AI (CCAI): a multi-stage process for sourcing and integrating public input into LMs.
We demonstrate the real-world practicality of this approach by creating what is, to our knowledge, the first LM fine-tuned with collectively sourced public input.
arXiv Detail & Related papers (2024-06-12T02:20:46Z) - Understanding Intrinsic Socioeconomic Biases in Large Language Models [4.276697874428501]
We introduce a novel dataset of one million English sentences to quantify socioeconomic biases.
Our findings reveal pervasive socioeconomic biases in both established models like GPT-2 and state-of-the-art models like Llama 2 and Falcon.
arXiv Detail & Related papers (2024-05-28T23:54:44Z) - Chain-of-Thought Prompting for Demographic Inference with Large Multimodal Models [58.58594658683919]
Large multimodal models (LMMs) have shown transformative potential across various research tasks.
Our findings indicate LMMs possess advantages in zero-shot learning, interpretability, and handling uncurated 'in-the-wild' inputs.
We propose a Chain-of-Thought augmented prompting approach, which effectively mitigates the off-target prediction issue.
arXiv Detail & Related papers (2024-05-24T16:26:56Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Rethinking Model Evaluation as Narrowing the Socio-Technical Gap [34.08410116336628]
We argue that model evaluation practices must take on a critical task to cope with the challenges and responsibilities brought by this homogenization.
We urge the community to develop evaluation methods based on real-world socio-requirements.
arXiv Detail & Related papers (2023-06-01T00:01:43Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z) - Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language
Models [11.323961700172175]
This article investigates the challenges and risks associated with biases in large-scale language models like ChatGPT.
We discuss the origins of biases, stemming from, among others, the nature of training data, model specifications, algorithmic constraints, product design, and policy decisions.
We review the current approaches to identify, quantify, and mitigate biases in language models, emphasizing the need for a multi-disciplinary, collaborative effort to develop more equitable, transparent, and responsible AI systems.
arXiv Detail & Related papers (2023-04-07T17:14:00Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.