The Bethe Ansatz as a Quantum Circuit
- URL: http://arxiv.org/abs/2309.14430v2
- Date: Wed, 15 May 2024 14:17:48 GMT
- Title: The Bethe Ansatz as a Quantum Circuit
- Authors: Roberto Ruiz, Alejandro Sopena, Max Hunter Gordon, Germán Sierra, Esperanza López,
- Abstract summary: We study the transformation that brings the Bethe ansatz into a quantum circuit.
We present a simple set of diagrammatic rules that define a novel Matrix Product State network building Bethe wavefunctions.
- Score: 40.02298833349518
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Bethe ansatz represents an analytical method enabling the exact solution of numerous models in condensed matter physics and statistical mechanics. When a global symmetry is present, the trial wavefunctions of the Bethe ansatz consist of plane wave superpositions. Previously, it has been shown that the Bethe ansatz can be recast as a deterministic quantum circuit. An analytical derivation of the quantum gates that form the circuit was lacking however. Here we present a comprehensive study of the transformation that brings the Bethe ansatz into a quantum circuit, which leads us to determine the analytical expression of the circuit gates. As a crucial step of the derivation, we present a simple set of diagrammatic rules that define a novel Matrix Product State network building Bethe wavefunctions. Remarkably, this provides a new perspective on the equivalence between the coordinate and algebraic versions of the Bethe ansatz.
Related papers
- Bethe Ansatz, Quantum Circuits, and the F-basis [40.02298833349518]
deterministic quantum algorithms, referred to as "algebraic Bethe circuits", have been developed to prepare Bethe states for the spin-1/2 XXZ model.
We show that algebraic Bethe circuits can be derived by a change of basis in the auxiliary space.
We demonstrate our approach by presenting new quantum circuits for the inhomogeneous spin-1/2 XXZ model.
arXiv Detail & Related papers (2024-11-04T19:01:41Z) - Construction of Antisymmetric Variational Quantum States with Real-Space
Representation [0.0]
A major difficulty in first quantization with a real-space basis is state preparation for many-body electronic systems.
We provide a design principle for constructing a variational quantum circuit to prepare an antisymmetric quantum state.
We implement the variational quantum eigensolver to obtain the ground state of a one-dimensional hydrogen molecular system.
arXiv Detail & Related papers (2023-06-14T11:11:31Z) - A Complete Equational Theory for Quantum Circuits [58.720142291102135]
We introduce the first complete equational theory for quantum circuits.
Two circuits represent the same unitary map if and only if they can be transformed one into the other using the equations.
arXiv Detail & Related papers (2022-06-21T17:56:31Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Quantum computing critical exponents [0.0]
We show that the Variational Quantum-Classical Simulation algorithm admits a finite circuit depth scaling collapse when targeting the critical point of the transverse field Ising chain.
The order parameter only collapses on one side of the transition due to a slowdown of the quantum algorithm when crossing the phase transition.
arXiv Detail & Related papers (2021-04-02T17:38:20Z) - Preparing Bethe Ansatz Eigenstates on a Quantum Computer [0.0]
We present a quantum algorithm for preparing Bethe ansatz eigenstates of the spin-1/2 XXZZ spin chain that correspond to real-valued solutions of the Bethe equations.
Although the algorithm is probabilistic, with a success rate that decreases with increasing eigenstate energy, we employ amplification to boost the success probability.
arXiv Detail & Related papers (2021-03-24T17:58:21Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Bethe ansatz on a quantum computer? [0.0]
We consider the feasibility of studying the anisotropic Heisenberg quantum spin chain with the Variational Quantum Eigensolver (VQE) algorithm.
We construct exact one-magnon trial states that are functions of the variational parameter, and implement the VQE calculations in Qiskit.
arXiv Detail & Related papers (2020-10-04T15:37:49Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.