Bethe Ansatz, Quantum Circuits, and the F-basis
- URL: http://arxiv.org/abs/2411.02519v1
- Date: Mon, 04 Nov 2024 19:01:41 GMT
- Title: Bethe Ansatz, Quantum Circuits, and the F-basis
- Authors: Roberto Ruiz, Alejandro Sopena, Esperanza López, Germán Sierra, Balázs Pozsgay,
- Abstract summary: deterministic quantum algorithms, referred to as "algebraic Bethe circuits", have been developed to prepare Bethe states for the spin-1/2 XXZ model.
We show that algebraic Bethe circuits can be derived by a change of basis in the auxiliary space.
We demonstrate our approach by presenting new quantum circuits for the inhomogeneous spin-1/2 XXZ model.
- Score: 40.02298833349518
- License:
- Abstract: The Bethe Ansatz is a method for constructing exact eigenstates of quantum-integrable spin chains. Recently, deterministic quantum algorithms, referred to as "algebraic Bethe circuits", have been developed to prepare Bethe states for the spin-1/2 XXZ model. These circuits represent a unitary formulation of the standard algebraic Bethe Ansatz, expressed using matrix-product states that act on both the spin chain and an auxiliary space. In this work, we systematize these previous results, and show that algebraic Bethe circuits can be derived by a change of basis in the auxiliary space. The new basis, identical to the "F-basis" known from the theory of quantum-integrable models, generates the linear superpositions of plane waves that are characteristic of the coordinate Bethe Ansatz. We explain this connection, highlighting that certain properties of the F-basis (namely, the exchange symmetry of the spins) are crucial for the construction of algebraic Bethe circuits. We demonstrate our approach by presenting new quantum circuits for the inhomogeneous spin-1/2 XXZ model.
Related papers
- Quantum Spin Chains and Symmetric Functions [1.7802147489386628]
We consider the question of what quantum spin chains naturally encode in their Hilbert space.
quantum spin chains are examples of "quantum integrable systems"
arXiv Detail & Related papers (2024-04-05T18:00:02Z) - The Bethe Ansatz as a Quantum Circuit [40.02298833349518]
We study the transformation that brings the Bethe ansatz into a quantum circuit.
We present a simple set of diagrammatic rules that define a novel Matrix Product State network building Bethe wavefunctions.
arXiv Detail & Related papers (2023-09-25T18:00:06Z) - All you need is spin: SU(2) equivariant variational quantum circuits
based on spin networks [0.0]
Variational algorithms require architectures that naturally constrain the optimisation space to run efficiently.
We propose the use of spin networks, a form of directed tensor network invariant under a group transformation, to devise SU(2) equivariant quantum circuit ans"atze.
By changing to the basis that block diagonalises SU(2) group action, these networks provide a natural building block for constructing parameterised equivariant quantum circuits.
arXiv Detail & Related papers (2023-09-13T18:38:41Z) - A Bottom-up Approach to Constructing Symmetric Variational Quantum
Circuits [0.0]
We show how to construct symmetric quantum circuits using representation theory.
We show how to derive the particle-conserving exchange gates, which are commonly used in constructing hardware-efficient quantum circuits.
arXiv Detail & Related papers (2023-08-17T10:57:15Z) - Algebraic Bethe Circuits [58.720142291102135]
We bring the Algebraic Bethe Ansatz (ABA) into unitary form, for its direct implementation on a quantum computer.
Our algorithm is deterministic and works for both real and complex roots of the Bethe equations.
We derive a new form of the Yang-Baxter equation using unitary matrices, and also verify it on a quantum computer.
arXiv Detail & Related papers (2022-02-09T19:00:21Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Preparing Bethe Ansatz Eigenstates on a Quantum Computer [0.0]
We present a quantum algorithm for preparing Bethe ansatz eigenstates of the spin-1/2 XXZZ spin chain that correspond to real-valued solutions of the Bethe equations.
Although the algorithm is probabilistic, with a success rate that decreases with increasing eigenstate energy, we employ amplification to boost the success probability.
arXiv Detail & Related papers (2021-03-24T17:58:21Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.