Electron Dynamics in Neutron Scattering with Hydrogen Atoms
- URL: http://arxiv.org/abs/2309.14470v4
- Date: Sat, 2 Dec 2023 10:10:02 GMT
- Title: Electron Dynamics in Neutron Scattering with Hydrogen Atoms
- Authors: Mingzhao Xing and Libin Fu
- Abstract summary: Changes in electron dynamics within the gas target have a negligible effect on dynamics of neutrons and protons.
We propose a theoretical approach to obtain these parameters from the momentum spectrum of ionized electrons within a hydrogen atomic gas target.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In neutron-proton (n-p) scattering experiments, gas targets have been used to
measure scattering length by detecting neutrons and recoil protons. Changes in
electron dynamics within the gas target have a negligible effect on dynamics of
neutrons and protons. However, electron dynamics are sensitive to the specific
form of the n-p interaction during the scattering process, providing additional
information to derive parameters in nuclear interaction models. We propose a
theoretical approach to obtain these parameters from the momentum spectrum of
ionized electrons within a hydrogen atomic gas target. This approach is based
on a three-body scattering involving a neutron, a proton and an electron. We
model the n-p interaction as the Yukawa potential and obtain the momentum
spectrum of ionized electrons through the solution of the Time-Dependent
Schr\"odinger Equation. Electron dynamics exhibit significant differences at
various potential parameters. These parameters can be determined by comparing
numerical calculations with experimental results. Moreover, this approach
offers insights into detecting ultrafast scattering processes.
Related papers
- Effective light-induced Hamiltonian for atoms with large nuclear spin [0.0]
Coupling with off-resonance light is an essential tool to selectively and coherently manipulate the nuclear spin states.
We present a systematic derivation of the effective Hamiltonian for the nuclear spin states of ultra-cold fermionic atoms due to such an off-resonance light.
arXiv Detail & Related papers (2024-04-18T18:00:01Z) - The Casimir effect at the nucleus [0.0]
This report presents a modification for the potential of electrons near the nucleus by investigating the impact of the Casimir effect on the innermost electrons.
It can be shown that with this approach the calculated binding energies agree much better with the values from spectroscopy, especially for heavy elements.
arXiv Detail & Related papers (2024-02-01T14:57:24Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Coulomb interaction-driven entanglement of electrons on helium [0.0]
We theoretically investigate the generation of emphmotional entanglement between two electrons via their unscreened Coulomb interaction.
We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis.
In particular, the theoretical tools developed here can be used for fine tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon.
arXiv Detail & Related papers (2023-10-07T21:40:20Z) - Comparing the effects of nuclear and electron spins on the formation of
neutral hydrogen molecule [0.0]
We introduce the association-dissociation model of neutral hydrogen molecule.
The motion of the nuclei can be represented in quantum form.
Consideration is also given to the effects of nuclear and electron spins on the formation of neutral hydrogen molecule.
arXiv Detail & Related papers (2023-03-18T13:18:18Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Three-electron correlations in strong laser field ionization: Spin
induced effects [0.0]
We study model atoms with three active electrons interacting with strong pulsed radiation, using an ab-initio time-dependent Schr"odinger equation on a grid.
We show that significant differences are obtained between model Neon and Nitrogen atoms.
These differences are traced back to the different symmetries of the electronic wavefunctions, and directly related to the different initial state spin components.
arXiv Detail & Related papers (2021-04-29T15:57:00Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.