DONNAv2 -- Lightweight Neural Architecture Search for Vision tasks
- URL: http://arxiv.org/abs/2309.14670v1
- Date: Tue, 26 Sep 2023 04:48:50 GMT
- Title: DONNAv2 -- Lightweight Neural Architecture Search for Vision tasks
- Authors: Sweta Priyadarshi, Tianyu Jiang, Hsin-Pai Cheng, Sendil Krishna,
Viswanath Ganapathy, Chirag Patel
- Abstract summary: We present the next-generation neural architecture design for computationally efficient neural architecture distillation - DONNAv2.
DONNAv2 reduces the computational cost of DONNA by 10x for the larger datasets.
To improve the quality of NAS search space, DONNAv2 leverages a block knowledge distillation filter to remove blocks with high inference costs.
- Score: 6.628409795264665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing demand for vision applications and deployment across edge
devices, the development of hardware-friendly architectures that maintain
performance during device deployment becomes crucial. Neural architecture
search (NAS) techniques explore various approaches to discover efficient
architectures for diverse learning tasks in a computationally efficient manner.
In this paper, we present the next-generation neural architecture design for
computationally efficient neural architecture distillation - DONNAv2 .
Conventional NAS algorithms rely on a computationally extensive stage where an
accuracy predictor is learned to estimate model performance within search
space. This building of accuracy predictors helps them predict the performance
of models that are not being finetuned. Here, we have developed an elegant
approach to eliminate building the accuracy predictor and extend DONNA to a
computationally efficient setting. The loss metric of individual blocks forming
the network serves as the surrogate performance measure for the sampled models
in the NAS search stage. To validate the performance of DONNAv2 we have
performed extensive experiments involving a range of diverse vision tasks
including classification, object detection, image denoising, super-resolution,
and panoptic perception network (YOLOP). The hardware-in-the-loop experiments
were carried out using the Samsung Galaxy S10 mobile platform. Notably, DONNAv2
reduces the computational cost of DONNA by 10x for the larger datasets.
Furthermore, to improve the quality of NAS search space, DONNAv2 leverages a
block knowledge distillation filter to remove blocks with high inference costs.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Search-time Efficient Device Constraints-Aware Neural Architecture
Search [6.527454079441765]
Deep learning techniques like computer vision and natural language processing can be computationally expensive and memory-intensive.
We automate the construction of task-specific deep learning architectures optimized for device constraints through Neural Architecture Search (NAS)
We present DCA-NAS, a principled method of fast neural network architecture search that incorporates edge-device constraints.
arXiv Detail & Related papers (2023-07-10T09:52:28Z) - NAS-FCOS: Efficient Search for Object Detection Architectures [113.47766862146389]
We propose an efficient method to obtain better object detectors by searching for the feature pyramid network (FPN) and the prediction head of a simple anchor-free object detector.
With carefully designed search space, search algorithms, and strategies for evaluating network quality, we are able to find top-performing detection architectures within 4 days using 8 V100 GPUs.
arXiv Detail & Related papers (2021-10-24T12:20:04Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
Binarized neural architecture search (BNAS) produces extremely compressed models to reduce huge computational cost on embedded devices for edge computing.
An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS.
arXiv Detail & Related papers (2020-09-08T15:51:23Z) - Neural Architecture Optimization with Graph VAE [21.126140965779534]
We propose an efficient NAS approach to optimize network architectures in a continuous space.
The framework jointly learns four components: the encoder, the performance predictor, the complexity predictor and the decoder.
arXiv Detail & Related papers (2020-06-18T07:05:48Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications.
These networks consist of stages, which are sets of layers that operate on representations in the same resolution.
It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network.
However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time.
arXiv Detail & Related papers (2020-04-23T14:16:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.