Effective Multi-Agent Deep Reinforcement Learning Control with Relative
Entropy Regularization
- URL: http://arxiv.org/abs/2309.14727v1
- Date: Tue, 26 Sep 2023 07:38:19 GMT
- Title: Effective Multi-Agent Deep Reinforcement Learning Control with Relative
Entropy Regularization
- Authors: Chenyang Miao, Yunduan Cui, Huiyun Li, Xinyu Wu
- Abstract summary: Multi-Agent Continuous Dynamic Policy Gradient (MACDPP) was proposed to tackle the issues of limited capability and sample efficiency in various scenarios controlled by multiple agents.
It alleviates the inconsistency of multiple agents' policy updates by introducing the relative entropy regularization to the Training with Decentralized Execution (CTDE) framework with the Actor-Critic (AC) structure.
- Score: 6.441951360534903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a novel Multi-agent Reinforcement Learning (MARL) approach,
Multi-Agent Continuous Dynamic Policy Gradient (MACDPP) was proposed to tackle
the issues of limited capability and sample efficiency in various scenarios
controlled by multiple agents. It alleviates the inconsistency of multiple
agents' policy updates by introducing the relative entropy regularization to
the Centralized Training with Decentralized Execution (CTDE) framework with the
Actor-Critic (AC) structure. Evaluated by multi-agent cooperation and
competition tasks and traditional control tasks including OpenAI benchmarks and
robot arm manipulation, MACDPP demonstrates significant superiority in learning
capability and sample efficiency compared with both related multi-agent and
widely implemented signal-agent baselines and therefore expands the potential
of MARL in effectively learning challenging control scenarios.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
Multi-agent Reinforcement Learning (MARL) is emerging as a key framework for sequential decision-making and control tasks.
The deployment of these systems in real-world scenarios often requires decentralized training, a diverse set of agents, and learning from infrequent environmental reward signals.
We propose the CoHet algorithm, which utilizes a novel Graph Neural Network (GNN) based intrinsic motivation to facilitate the learning of heterogeneous agent policies.
arXiv Detail & Related papers (2024-08-12T21:38:40Z) - Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization [63.554226552130054]
Generalization poses a significant challenge in Multi-agent Reinforcement Learning (MARL)
The extent to which an agent is influenced by unseen co-players depends on the agent's policy and the specific scenario.
We present the Level of Influence (LoI), a metric quantifying the interaction intensity among agents within a given scenario and environment.
arXiv Detail & Related papers (2023-10-11T06:09:26Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - A Variational Approach to Mutual Information-Based Coordination for
Multi-Agent Reinforcement Learning [17.893310647034188]
We propose a new mutual information framework for multi-agent reinforcement learning.
Applying policy to maximize the derived lower bound, we propose a practical algorithm named variational maximum mutual information multi-agent actor-critic.
arXiv Detail & Related papers (2023-03-01T12:21:30Z) - Macro-Action-Based Multi-Agent/Robot Deep Reinforcement Learning under
Partial Observability [4.111899441919164]
State-of-the-art multi-agent reinforcement learning (MARL) methods have provided promising solutions to a variety of complex problems.
We first propose a group of value-based RL approaches for MacDec-POMDPs.
We formulate a set of macro-action-based policy gradient algorithms under the three training paradigms.
arXiv Detail & Related papers (2022-09-20T21:13:51Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
We quantify the agent's behavior difference and build its relationship with the policy performance via bf Role Diversity
We find that the error bound in MARL can be decomposed into three parts that have a strong relation to the role diversity.
The decomposed factors can significantly impact policy optimization on three popular directions.
arXiv Detail & Related papers (2022-06-01T04:58:52Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
We make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks.
Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy.
The proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable.
arXiv Detail & Related papers (2021-01-20T07:24:24Z) - Lyapunov-Based Reinforcement Learning for Decentralized Multi-Agent
Control [3.3788926259119645]
In decentralized multi-agent control, systems are complex with unknown or highly uncertain dynamics.
Deep reinforcement learning (DRL) is promising to learn the controller/policy from data without the knowing system dynamics.
Existing multi-agent reinforcement learning (MARL) algorithms cannot ensure the closed-loop stability of a multi-agent system.
We propose a new MARL algorithm for decentralized multi-agent control with a stability guarantee.
arXiv Detail & Related papers (2020-09-20T06:11:42Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.