Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization
- URL: http://arxiv.org/abs/2310.07218v1
- Date: Wed, 11 Oct 2023 06:09:26 GMT
- Title: Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization
- Authors: Yuxin Chen, Chen Tang, Ran Tian, Chenran Li, Jinning Li, Masayoshi
Tomizuka, Wei Zhan
- Abstract summary: Generalization poses a significant challenge in Multi-agent Reinforcement Learning (MARL)
The extent to which an agent is influenced by unseen co-players depends on the agent's policy and the specific scenario.
We present the Level of Influence (LoI), a metric quantifying the interaction intensity among agents within a given scenario and environment.
- Score: 63.554226552130054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalization poses a significant challenge in Multi-agent Reinforcement
Learning (MARL). The extent to which an agent is influenced by unseen
co-players depends on the agent's policy and the specific scenario. A
quantitative examination of this relationship sheds light on effectively
training agents for diverse scenarios. In this study, we present the Level of
Influence (LoI), a metric quantifying the interaction intensity among agents
within a given scenario and environment. We observe that, generally, a more
diverse set of co-play agents during training enhances the generalization
performance of the ego agent; however, this improvement varies across distinct
scenarios and environments. LoI proves effective in predicting these
improvement disparities within specific scenarios. Furthermore, we introduce a
LoI-guided resource allocation method tailored to train a set of policies for
diverse scenarios under a constrained budget. Our results demonstrate that
strategic resource allocation based on LoI can achieve higher performance than
uniform allocation under the same computation budget.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Role Play: Learning Adaptive Role-Specific Strategies in Multi-Agent Interactions [8.96091816092671]
We propose a novel framework called emphRole Play (RP)
RP employs role embeddings to transform the challenge of policy diversity into a more manageable diversity of roles.
It trains a common policy with role embedding observations and employs a role predictor to estimate the joint role embeddings of other agents, helping the learning agent adapt to its assigned role.
arXiv Detail & Related papers (2024-11-02T07:25:48Z) - CoPS: Empowering LLM Agents with Provable Cross-Task Experience Sharing [70.25689961697523]
We propose a generalizable algorithm that enhances sequential reasoning by cross-task experience sharing and selection.
Our work bridges the gap between existing sequential reasoning paradigms and validates the effectiveness of leveraging cross-task experiences.
arXiv Detail & Related papers (2024-10-22T03:59:53Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
Multi-agent Reinforcement Learning (MARL) is emerging as a key framework for sequential decision-making and control tasks.
The deployment of these systems in real-world scenarios often requires decentralized training, a diverse set of agents, and learning from infrequent environmental reward signals.
We propose the CoHet algorithm, which utilizes a novel Graph Neural Network (GNN) based intrinsic motivation to facilitate the learning of heterogeneous agent policies.
arXiv Detail & Related papers (2024-08-12T21:38:40Z) - Effective Multi-Agent Deep Reinforcement Learning Control with Relative
Entropy Regularization [6.441951360534903]
Multi-Agent Continuous Dynamic Policy Gradient (MACDPP) was proposed to tackle the issues of limited capability and sample efficiency in various scenarios controlled by multiple agents.
It alleviates the inconsistency of multiple agents' policy updates by introducing the relative entropy regularization to the Training with Decentralized Execution (CTDE) framework with the Actor-Critic (AC) structure.
arXiv Detail & Related papers (2023-09-26T07:38:19Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
We quantify the agent's behavior difference and build its relationship with the policy performance via bf Role Diversity
We find that the error bound in MARL can be decomposed into three parts that have a strong relation to the role diversity.
The decomposed factors can significantly impact policy optimization on three popular directions.
arXiv Detail & Related papers (2022-06-01T04:58:52Z) - Influencing Long-Term Behavior in Multiagent Reinforcement Learning [59.98329270954098]
We propose a principled framework for considering the limiting policies of other agents as the time approaches infinity.
Specifically, we develop a new optimization objective that maximizes each agent's average reward by directly accounting for the impact of its behavior on the limiting set of policies that other agents will take on.
Thanks to our farsighted evaluation, we demonstrate better long-term performance than state-of-the-art baselines in various domains.
arXiv Detail & Related papers (2022-03-07T17:32:35Z) - Learning Cooperative Multi-Agent Policies with Partial Reward Decoupling [13.915157044948364]
One of the preeminent obstacles to scaling multi-agent reinforcement learning is assigning credit to individual agents' actions.
In this paper, we address this credit assignment problem with an approach that we call textitpartial reward decoupling (PRD)
PRD decomposes large cooperative multi-agent RL problems into decoupled subproblems involving subsets of agents, thereby simplifying credit assignment.
arXiv Detail & Related papers (2021-12-23T17:48:04Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities.
Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?''
arXiv Detail & Related papers (2020-06-07T18:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.