論文の概要: SSPFusion: A Semantic Structure-Preserving Approach for Infrared and Visible Image Fusion
- arxiv url: http://arxiv.org/abs/2309.14745v3
- Date: Tue, 12 Aug 2025 09:13:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.091221
- Title: SSPFusion: A Semantic Structure-Preserving Approach for Infrared and Visible Image Fusion
- Title(参考訳): SSPFusion:赤外線と可視画像融合のための意味的構造保存手法
- Authors: Qiao Yang, Yu Zhang, Yutong Chen, Jian Zhang, Shunli Zhang,
- Abstract要約: マルチモーダル画像融合のための意味的構造保存融合法を提案する。
本手法は, 定性評価と定量的評価の両面で, 9つの最先端手法より優れていることを示す。
- 参考スコア(独自算出の注目度): 15.513687345562499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing learning-based multi-modality image fusion (MMIF) methods suffer from significant structure inconsistency due to their inappropriate usage of structural features at the semantic level. To alleviate these issues, we propose a semantic structure-preserving fusion approach for MMIF, namely SSPFusion. At first, we design a structural feature extractor (SFE) to extract the prominent structural features from multiple input images. Concurrently, we introduce a transformation function with Sobel operator to generate self-supervised structural signals in these extracted features. Subsequently, we design a multi-scale structure-preserving fusion (SPF) module, guided by the generated structural signals, to merge the structural features of input images. This process ensures the preservation of semantic structure consistency between the resultant fusion image and the input images. Through the synergy of these two robust modules of SFE and SPF, our method can generate high-quality fusion images and demonstrate good generalization ability. Experimental results, on both infrared-visible image fusion and medical image fusion tasks, demonstrate that our method outperforms nine state-of-the-art methods in terms of both qualitative and quantitative evaluations. The code is publicly available at https://github.com/QiaoYang-CV/SSPFUSION.
- Abstract(参考訳): 既存の学習ベースマルチモーダリティ画像融合(MMIF)法は, 意味レベルでの構造的特徴が不適切であるために, 構造的不整合に悩まされている。
これらの問題を緩和するために,MMIFのための意味構造保存融合手法,すなわちSSPFusionを提案する。
まず、複数の入力画像から顕著な特徴を抽出する構造特徴抽出器(SFE)を設計する。
同時に,ソベル演算子を用いた変換関数を導入し,これらの特徴量から自己教師付き構造信号を生成する。
その後、入力画像の構造的特徴をマージするために、生成した構造信号で導かれるマルチスケール構造保存融合(SPF)モジュールを設計する。
この処理により、結果の融合画像と入力画像とのセマンティック構造一貫性の維持が保証される。
SFEとSPFの2つの頑健なモジュールの相乗効果により,高品質な融合画像を生成することができ,優れた一般化能力を示すことができる。
赤外線可視画像融合と医用画像融合の両課題における実験結果は, 定性評価と定量的評価の両面で, 9つの最先端手法より優れていることを示した。
コードはhttps://github.com/QiaoYang-CV/SSPFUSION.comで公開されている。
関連論文リスト
- SGDFuse: SAM-Guided Diffusion for High-Fidelity Infrared and Visible Image Fusion [38.09521879556221]
本稿では,Segment Anything Model(SAM)によって導かれる条件拡散モデルを提案する。
このフレームワークは2段階のプロセスで動作し、まずマルチモーダルな特徴の予備的な融合を行い、その後、拡散モデルの粗大な分極生成を駆動する条件としてセマンティックマスクを利用する。
SGDFuseは主観的評価と客観的評価の両方において最先端の性能を発揮することを示す。
論文 参考訳(メタデータ) (2025-08-07T10:58:52Z) - Infrared and Visible Image Fusion Based on Implicit Neural Representations [3.8530055385287403]
赤外線と可視光画像融合は、両モードの強度を組み合わせることで、情報に富む画像を生成することを目的としている。
Inlicit Neural Representations (INR) に基づく画像融合手法を提案する。
実験の結果,INRFuseは主観的視覚的品質と客観的評価指標の両方において既存手法よりも優れていた。
論文 参考訳(メタデータ) (2025-06-20T06:34:19Z) - DFVO: Learning Darkness-free Visible and Infrared Image Disentanglement and Fusion All at Once [57.15043822199561]
可視・赤外画像のアンタングル化と融合を同時に行うためのダークネスフリーネットワーク(DFVO)を提案する。
DFVOは、従来の2段階のカスケードトレーニング(エンハンスメントと融合)を置き換えるために、ケースケードマルチタスクアプローチを採用している
提案手法は,定性的および定量的評価の観点から,最先端の代替品よりも優れている。
論文 参考訳(メタデータ) (2025-05-07T15:59:45Z) - DAF-Net: A Dual-Branch Feature Decomposition Fusion Network with Domain Adaptive for Infrared and Visible Image Fusion [21.64382683858586]
赤外線と可視画像の融合は、両モードの相補的な情報を組み合わせて、より包括的なシーン理解を提供することを目的としている。
最大領域適応型デュアルブランチ機能分解融合ネットワーク(DAF-Net)を提案する。
MK-MMDを導入することで、DAF-Netは可視画像と赤外線画像の潜在特徴空間を効果的に整列し、融合画像の品質を向上させる。
論文 参考訳(メタデータ) (2024-09-18T02:14:08Z) - IAIFNet: An Illumination-Aware Infrared and Visible Image Fusion Network [13.11361803763253]
我々はIAIFNetという名前のイルミネーション対応赤外線・可視画像融合ネットワークを提案する。
本フレームワークでは,まず,入力画像の入射照明マップを推定する。
適応微分融合モジュール (ADFM) と有向目標認識モジュール (STAM) の助けを借りて, 画像融合ネットワークは, 照明付赤外線と可視画像の有向的特徴を高画質の融合画像に効果的に統合する。
論文 参考訳(メタデータ) (2023-09-26T15:12:29Z) - Fusion of Infrared and Visible Images based on Spatial-Channel
Attentional Mechanism [3.388001684915793]
Infrared and visible image fusion (IVIF) の革新的アプローチであるAMFusionNetを提案する。
可視光源からのテクスチャ特徴と赤外線画像からの熱的詳細を同化することにより,包括的情報に富んだ画像を生成する。
提案手法は, 品質と量の観点から, 最先端のアルゴリズムより優れている。
論文 参考訳(メタデータ) (2023-08-25T21:05:11Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
対向シーンにおけるセグメンテーションの堅牢性を促進するための認識認識型融合フレームワークを提案する。
我々は,先進の競争相手に比べて15.3% mIOUの利得で,ロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-08-08T01:55:44Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
2つの大きなスタブリングブロックは、画素の不一致や非効率な推論など、開発を妨げる。
本研究では,高機能なマルチ露光画像融合のための自己アライメントとディテールリプレクションモジュールを取り入れたアーキテクチャ検索に基づくパラダイムを提案する。
提案手法は様々な競争方式より優れており、一般的なシナリオではPSNRが3.19%向上し、不整合シナリオでは23.5%向上した。
論文 参考訳(メタデータ) (2023-05-20T17:01:52Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
この研究は、野生の隠れた物体の発見と位置決めに焦点をあて、無人のシステムに役立てる。
経験的分析により、赤外線と可視画像融合(IVIF)は、難しい物体の発見を可能にする。
マルチモーダル・サリエント・オブジェクト検出(SOD)は、画像内の物体の正確な空間的位置を正確に記述する。
論文 参考訳(メタデータ) (2023-05-17T06:48:35Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion [72.8898811120795]
我々は、赤外線と可視画像の融合を実現するために、CoCoNetと呼ばれるコントラスト学習ネットワークを提案する。
本手法は,主観的評価と客観的評価の両面において,最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-11-20T12:02:07Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Unsupervised Image Fusion Method based on Feature Mutual Mapping [16.64607158983448]
上記の問題に対処するために,教師なし適応画像融合法を提案する。
入力元画像間の画素の接続を計測するグローバルマップを構築した。
本手法は視覚的知覚と客観的評価の両方において優れた性能を実現する。
論文 参考訳(メタデータ) (2022-01-25T07:50:14Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
自律運転やロボティクスなど,多くのアプリケーションを対象とした3次元セマンティックセマンティックセグメンテーションのためのマルチセンサフュージョンについて検討する。
本研究では,知覚認識型マルチセンサフュージョン(PMF)と呼ばれる協調融合方式について検討する。
本稿では,2つのモードから特徴を分離して抽出する2ストリームネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-21T10:47:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。