Frugal Satellite Image Change Detection with Deep-Net Inversion
- URL: http://arxiv.org/abs/2309.14781v1
- Date: Tue, 26 Sep 2023 09:25:53 GMT
- Title: Frugal Satellite Image Change Detection with Deep-Net Inversion
- Authors: Hichem Sahbi and Sebastien Deschamps
- Abstract summary: We devise a novel algorithm for change detection based on active learning.
The proposed method is based on a question and answer model that probes an oracle (user) about the relevance of changes.
The main contribution resides in a novel adversarial model that allows learning the most representative, diverse and uncertain virtual exemplars.
- Score: 5.656581242851759
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection in satellite imagery seeks to find occurrences of targeted
changes in a given scene taken at different instants. This task has several
applications ranging from land-cover mapping, to anthropogenic activity
monitory as well as climate change and natural hazard damage assessment.
However, change detection is highly challenging due to the acquisition
conditions and also to the subjectivity of changes. In this paper, we devise a
novel algorithm for change detection based on active learning. The proposed
method is based on a question and answer model that probes an oracle (user)
about the relevance of changes only on a small set of critical images (referred
to as virtual exemplars), and according to oracle's responses updates deep
neural network (DNN) classifiers. The main contribution resides in a novel
adversarial model that allows learning the most representative, diverse and
uncertain virtual exemplars (as inverted preimages of the trained DNNs) that
challenge (the most) the trained DNNs, and this leads to a better re-estimate
of these networks in the subsequent iterations of active learning. Experiments
show the out-performance of our proposed deep-net inversion against the related
work.
Related papers
- Show Me What and Where has Changed? Question Answering and Grounding for Remote Sensing Change Detection [82.65760006883248]
We introduce a new task named Change Detection Question Answering and Grounding (CDQAG)
CDQAG extends the traditional change detection task by providing interpretable textual answers and intuitive visual evidence.
We construct the first CDQAG benchmark dataset, termed QAG-360K, comprising over 360K triplets of questions, textual answers, and corresponding high-quality visual masks.
arXiv Detail & Related papers (2024-10-31T11:20:13Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - Change Detection Methods for Remote Sensing in the Last Decade: A
Comprehensive Review [45.78958623050146]
Change detection is an essential and widely utilized task in remote sensing.
It aims to detect and analyze changes occurring in the same geographical area over time.
Deep learning has emerged as a powerful tool for feature extraction and addressing these challenges.
arXiv Detail & Related papers (2023-05-09T23:52:37Z) - Adversarial Virtual Exemplar Learning for Label-Frugal Satellite Image
Change Detection [12.18340575383456]
In this paper, we investigate satellite image change detection using active learning.
Our method is interactive and relies on a question and answer model which asks the oracle (user) questions about the most informative display.
The main contribution of our method consists in a novel adversarial model that allows frugally probing the oracle with only the most representative, diverse and uncertain virtual exemplars.
arXiv Detail & Related papers (2022-12-28T17:46:20Z) - Reinforcement-based frugal learning for satellite image change detection [12.18340575383456]
We introduce a novel interactive satellite image change detection algorithm based on active learning.
The proposed approach is iterative and asks the user (oracle) questions about the targeted changes.
We consider a probabilistic framework which assigns to each unlabeled sample a relevance measure modeling how critical is that sample when training change detection functions.
arXiv Detail & Related papers (2022-03-22T09:37:24Z) - Frugal Learning of Virtual Exemplars for Label-Efficient Satellite Image
Change Detection [12.18340575383456]
In this paper, we devise a novel interactive satellite image change detection algorithm based on active learning.
The proposed framework is iterative and relies on a question and answer model which asks the oracle (user) questions about the most informative display.
The contribution of our framework resides in a novel display model which selects the most representative and diverse virtual exemplars.
arXiv Detail & Related papers (2022-03-22T09:29:42Z) - Unsupervised Change Detection in Satellite Images with Generative
Adversarial Network [20.81970476609318]
We propose a novel change detection framework utilizing a special neural network architecture -- Generative Adversarial Network (GAN) to generate better coregistered images.
The optimized GAN model would produce better coregistered images where changes can be easily spotted and then the change map can be presented through a comparison strategy.
arXiv Detail & Related papers (2020-09-08T10:26:04Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.