Supervised Contrastive Learning with Structure Inference for Graph
Classification
- URL: http://arxiv.org/abs/2203.07691v1
- Date: Tue, 15 Mar 2022 07:18:46 GMT
- Title: Supervised Contrastive Learning with Structure Inference for Graph
Classification
- Authors: Hao Jia, Junzhong Ji, and Minglong Lei
- Abstract summary: We propose a graph neural network based on supervised contrastive learning and structure inference for graph classification.
With the integration of label information, the one-vs-many contrastive learning can be extended to a many-vs-many setting.
Experiment results show the effectiveness of the proposed method compared with recent state-of-the-art methods.
- Score: 5.276232626689567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced graph neural networks have shown great potentials in graph
classification tasks recently. Different from node classification where node
embeddings aggregated from local neighbors can be directly used to learn node
labels, graph classification requires a hierarchical accumulation of different
levels of topological information to generate discriminative graph embeddings.
Still, how to fully explore graph structures and formulate an effective graph
classification pipeline remains rudimentary. In this paper, we propose a novel
graph neural network based on supervised contrastive learning with structure
inference for graph classification. First, we propose a data-driven graph
augmentation strategy that can discover additional connections to enhance the
existing edge set. Concretely, we resort to a structure inference stage based
on diffusion cascades to recover possible connections with high node
similarities. Second, to improve the contrastive power of graph neural
networks, we propose to use a supervised contrastive loss for graph
classification. With the integration of label information, the one-vs-many
contrastive learning can be extended to a many-vs-many setting, so that the
graph-level embeddings with higher topological similarities will be pulled
closer. The supervised contrastive loss and structure inference can be
naturally incorporated within the hierarchical graph neural networks where the
topological patterns can be fully explored to produce discriminative graph
embeddings. Experiment results show the effectiveness of the proposed method
compared with recent state-of-the-art methods.
Related papers
- Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
We propose a novel multiview contrastive learning approach that integrates diffusion filters on graphs.
By incorporating multiple graph views as augmentations, our method captures the structural equivalence in heterophilic graphs.
arXiv Detail & Related papers (2023-08-19T17:42:02Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - Robust Hierarchical Graph Classification with Subgraph Attention [18.7475578342125]
We introduce the concept of subgraph attention for graphs.
We propose a graph classification algorithm called SubGattPool.
We show that SubGattPool is able to improve the state-of-the-art or remains competitive on multiple publicly available graph classification datasets.
arXiv Detail & Related papers (2020-07-19T10:03:06Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Unsupervised Hierarchical Graph Representation Learning by Mutual
Information Maximization [8.14036521415919]
We present an unsupervised graph representation learning method, Unsupervised Hierarchical Graph Representation (UHGR)
Our method focuses on maximizing mutual information between "local" and high-level "global" representations.
The results show that the proposed method achieves comparable results to state-of-the-art supervised methods on several benchmarks.
arXiv Detail & Related papers (2020-03-18T18:21:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.