Unsupervised Multi-Person 3D Human Pose Estimation From 2D Poses Alone
- URL: http://arxiv.org/abs/2309.14865v3
- Date: Tue, 12 Mar 2024 17:45:45 GMT
- Title: Unsupervised Multi-Person 3D Human Pose Estimation From 2D Poses Alone
- Authors: Peter Hardy and Hansung Kim
- Abstract summary: We present one of the first studies investigating the feasibility of unsupervised multi-person 2D-3D pose estimation.
Our method involves independently lifting each subject's 2D pose to 3D, before combining them in a shared 3D coordinate system.
This by itself enables us to retrieve an accurate 3D reconstruction of their poses.
- Score: 4.648549457266638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current unsupervised 2D-3D human pose estimation (HPE) methods do not work in
multi-person scenarios due to perspective ambiguity in monocular images.
Therefore, we present one of the first studies investigating the feasibility of
unsupervised multi-person 2D-3D HPE from just 2D poses alone, focusing on
reconstructing human interactions. To address the issue of perspective
ambiguity, we expand upon prior work by predicting the cameras' elevation angle
relative to the subjects' pelvis. This allows us to rotate the predicted poses
to be level with the ground plane, while obtaining an estimate for the vertical
offset in 3D between individuals. Our method involves independently lifting
each subject's 2D pose to 3D, before combining them in a shared 3D coordinate
system. The poses are then rotated and offset by the predicted elevation angle
before being scaled. This by itself enables us to retrieve an accurate 3D
reconstruction of their poses. We present our results on the CHI3D dataset,
introducing its use for unsupervised 2D-3D pose estimation with three new
quantitative metrics, and establishing a benchmark for future research.
Related papers
- MPL: Lifting 3D Human Pose from Multi-view 2D Poses [75.26416079541723]
We propose combining 2D pose estimation, for which large and rich training datasets exist, and 2D-to-3D pose lifting, using a transformer-based network.
Our experiments demonstrate decreases up to 45% in MPJPE errors compared to the 3D pose obtained by triangulating the 2D poses.
arXiv Detail & Related papers (2024-08-20T12:55:14Z) - MPM: A Unified 2D-3D Human Pose Representation via Masked Pose Modeling [59.74064212110042]
mpmcan handle multiple tasks including 3D human pose estimation, 3D pose estimation from cluded 2D pose, and 3D pose completion in a textocbfsingle framework.
We conduct extensive experiments and ablation studies on several widely used human pose datasets and achieve state-of-the-art performance on MPI-INF-3DHP.
arXiv Detail & Related papers (2023-06-29T10:30:00Z) - SPGNet: Spatial Projection Guided 3D Human Pose Estimation in Low
Dimensional Space [14.81199315166042]
We propose a method for 3D human pose estimation that mixes multi-dimensional re-projection into supervised learning.
Based on the estimation results for the dataset Human3.6M, our approach outperforms many state-of-the-art methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-06-04T00:51:00Z) - ElePose: Unsupervised 3D Human Pose Estimation by Predicting Camera
Elevation and Learning Normalizing Flows on 2D Poses [23.554957518485324]
We propose an unsupervised approach that learns to predict a 3D human pose from a single image.
We estimate the 3D pose that is most likely over random projections, with the likelihood estimated using normalizing flows on 2D poses.
We outperform the state-of-the-art unsupervised human pose estimation methods on the benchmark datasets Human3.6M and MPI-INF-3DHP in many metrics.
arXiv Detail & Related papers (2021-12-14T01:12:45Z) - SVMA: A GAN-based model for Monocular 3D Human Pose Estimation [0.8379286663107844]
We present an unsupervised GAN-based model to recover 3D human pose from 2D joint locations extracted from a single image.
Considering the reprojection constraint, our model can estimate the camera so that we can reproject the estimated 3D pose to the original 2D pose.
Results on Human3.6M show that our method outperforms all the state-of-the-art methods, and results on MPI-INF-3DHP show that our method outperforms state-of-the-art by approximately 15.0%.
arXiv Detail & Related papers (2021-06-10T09:43:57Z) - Residual Pose: A Decoupled Approach for Depth-based 3D Human Pose
Estimation [18.103595280706593]
We leverage recent advances in reliable 2D pose estimation with CNN to estimate the 3D pose of people from depth images.
Our approach achieves very competitive results both in accuracy and speed on two public datasets.
arXiv Detail & Related papers (2020-11-10T10:08:13Z) - SMAP: Single-Shot Multi-Person Absolute 3D Pose Estimation [46.85865451812981]
We propose a novel system that first regresses a set of 2.5D representations of body parts and then reconstructs the 3D absolute poses based on these 2.5D representations with a depth-aware part association algorithm.
Such a single-shot bottom-up scheme allows the system to better learn and reason about the inter-person depth relationship, improving both 3D and 2D pose estimation.
arXiv Detail & Related papers (2020-08-26T09:56:07Z) - Unsupervised Cross-Modal Alignment for Multi-Person 3D Pose Estimation [52.94078950641959]
We present a deployment friendly, fast bottom-up framework for multi-person 3D human pose estimation.
We adopt a novel neural representation of multi-person 3D pose which unifies the position of person instances with their corresponding 3D pose representation.
We propose a practical deployment paradigm where paired 2D or 3D pose annotations are unavailable.
arXiv Detail & Related papers (2020-08-04T07:54:25Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach [76.10879433430466]
We propose to estimate 3D human pose from multi-view images and a few IMUs attached at person's limbs.
It operates by firstly detecting 2D poses from the two signals, and then lifting them to the 3D space.
The simple two-step approach reduces the error of the state-of-the-art by a large margin on a public dataset.
arXiv Detail & Related papers (2020-03-25T00:26:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.