Facilitating Interdisciplinary Knowledge Transfer with Research Paper Recommender Systems
- URL: http://arxiv.org/abs/2309.14984v2
- Date: Tue, 05 Nov 2024 12:09:18 GMT
- Title: Facilitating Interdisciplinary Knowledge Transfer with Research Paper Recommender Systems
- Authors: Eoghan Cunningham, Derek Greene, Barry Smyth,
- Abstract summary: We argue for the importance of offering novel and diverse research paper recommendations to scientists.
This approach aims to reduce siloed reading, break down filter bubbles, and promote interdisciplinary research.
- Score: 7.994912533454301
- License:
- Abstract: In the extensive recommender systems literature, novelty and diversity have been identified as key properties of useful recommendations. However, these properties have received limited attention in the specific sub-field of research paper recommender systems. In this work, we argue for the importance of offering novel and diverse research paper recommendations to scientists. This approach aims to reduce siloed reading, break down filter bubbles, and promote interdisciplinary research. We propose a novel framework for evaluating the novelty and diversity of research paper recommendations that leverages methods from network analysis and natural language processing. Using this framework, we show that the choice of representational method within a larger research paper recommendation system can have a measurable impact on the nature of downstream recommendations, specifically on their novelty and diversity. We highlight a novel paper embedding method, which we demonstrate offers more innovative and diverse recommendations without sacrificing precision, compared to other state-of-the-art baselines.
Related papers
- Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Tag-Aware Document Representation for Research Paper Recommendation [68.8204255655161]
We propose a hybrid approach that leverages deep semantic representation of research papers based on social tags assigned by users.
The proposed model is effective in recommending research papers even when the rating data is very sparse.
arXiv Detail & Related papers (2022-09-08T09:13:07Z) - Towards Explainable Scientific Venue Recommendations [0.09668407688201358]
We propose an unsophisticated method that advances the state-of-the-art in this area.
First, we enhance the interpretability of recommendations through non-negative matrix factorization based topic models.
Second, we surprisingly can obtain competitive recommendation performance while using simpler learning methods.
arXiv Detail & Related papers (2021-09-21T10:25:26Z) - Operationalizing Framing to Support Multiperspective Recommendations of
Opinion Pieces [1.3286165491120467]
We operationalize the notion of framing, adopted from communication science.
We apply this notion to a re-ranking of topic-relevant recommended lists.
Our offline evaluation indicates that the proposed method is capable of enhancing the viewpoint diversity of recommendation lists.
arXiv Detail & Related papers (2021-01-15T14:40:34Z) - Research Progress of News Recommendation Methods [12.629405428751719]
News recommendation systems were the earliest research field regarding recommendation systems.
From 2018 to 2020, developed news recommendation methods were mainly deep learning-based, attention-based, and knowledge graphs-based.
arXiv Detail & Related papers (2020-12-04T01:47:24Z) - Recommender Systems for the Internet of Things: A Survey [53.865011795953706]
Recommendation represents a vital stage in developing and promoting the benefits of the Internet of Things.
Traditional recommender systems fail to exploit ever-growing, dynamic, and heterogeneous IoT data.
arXiv Detail & Related papers (2020-07-14T01:24:44Z) - A Prescription of Methodological Guidelines for Comparing Bio-inspired Optimization Algorithms [15.803264424018488]
We propose methodological guidelines to prepare a successful proposal of a new bio-inspired algorithm.
Results reported by the authors should be proven to achieve a significant advance over previous outcomes.
We expect these guidelines to be useful not only for authors, but also for reviewers and editors along their assessment of new contributions to the field.
arXiv Detail & Related papers (2020-04-19T04:46:45Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.