IAIFNet: An Illumination-Aware Infrared and Visible Image Fusion Network
- URL: http://arxiv.org/abs/2309.14997v3
- Date: Sun, 26 May 2024 08:19:56 GMT
- Title: IAIFNet: An Illumination-Aware Infrared and Visible Image Fusion Network
- Authors: Qiao Yang, Yu Zhang, Zijing Zhao, Jian Zhang, Shunli Zhang,
- Abstract summary: We propose an Illumination-Aware Infrared and Visible Image Fusion Network, named as IAIFNet.
In our framework, an illumination enhancement network first estimates the incident illumination maps of input images.
With the help of proposed adaptive differential fusion module (ADFM) and salient target aware module (STAM), an image fusion network effectively integrates the salient features of the illumination-enhanced infrared and visible images into a fusion image of high visual quality.
- Score: 13.11361803763253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared and visible image fusion (IVIF) is used to generate fusion images with comprehensive features of both images, which is beneficial for downstream vision tasks. However, current methods rarely consider the illumination condition in low-light environments, and the targets in the fused images are often not prominent. To address the above issues, we propose an Illumination-Aware Infrared and Visible Image Fusion Network, named as IAIFNet. In our framework, an illumination enhancement network first estimates the incident illumination maps of input images. Afterwards, with the help of proposed adaptive differential fusion module (ADFM) and salient target aware module (STAM), an image fusion network effectively integrates the salient features of the illumination-enhanced infrared and visible images into a fusion image of high visual quality. Extensive experimental results verify that our method outperforms five state-of-the-art methods of fusing infrared and visible images.
Related papers
- Infrared-Assisted Single-Stage Framework for Joint Restoration and Fusion of Visible and Infrared Images under Hazy Conditions [9.415977819944246]
We propose a joint learning framework that utilizes infrared image for the restoration and fusion of hazy IR-VIS images.
Our method effectively fuses IR-VIS images while removing haze, yielding clear, haze-free fusion results.
arXiv Detail & Related papers (2024-11-16T02:57:12Z) - Implicit Multi-Spectral Transformer: An Lightweight and Effective Visible to Infrared Image Translation Model [0.6817102408452475]
In computer vision, visible light images often exhibit low contrast in low-light conditions, presenting a significant challenge.
Recent advancements in deep learning, particularly the deployment of Generative Adversarial Networks (GANs), have facilitated the transformation of visible light images to infrared images.
We propose a novel end-to-end Transformer-based model that efficiently converts visible light images into high-fidelity infrared images.
arXiv Detail & Related papers (2024-04-10T15:02:26Z) - Beyond Night Visibility: Adaptive Multi-Scale Fusion of Infrared and
Visible Images [49.75771095302775]
We propose an Adaptive Multi-scale Fusion network (AMFusion) with infrared and visible images.
First, we separately fuse spatial and semantic features from infrared and visible images, where the former are used for the adjustment of light distribution.
Second, we utilize detection features extracted by a pre-trained backbone that guide the fusion of semantic features.
Third, we propose a new illumination loss to constrain fusion image with normal light intensity.
arXiv Detail & Related papers (2024-03-02T03:52:07Z) - SSPFusion: A Semantic Structure-Preserving Approach for Infrared and
Visible Image Fusion [30.55433673796615]
Most existing learning-based infrared and visible image fusion (IVIF) methods exhibit massive redundant information in the fusion images.
We propose a semantic structure-preserving approach for IVIF, namely SSPFusion.
Our method is able to generate high-quality fusion images from pairs of infrared and visible images, which can boost the performance of downstream computer-vision tasks.
arXiv Detail & Related papers (2023-09-26T08:13:32Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
This research focuses on the discovery and localization of hidden objects in the wild and serves unmanned systems.
Through empirical analysis, infrared and visible image fusion (IVIF) enables hard-to-find objects apparent.
multimodal salient object detection (SOD) accurately delineates the precise spatial location of objects within the picture.
arXiv Detail & Related papers (2023-05-17T06:48:35Z) - Breaking Free from Fusion Rule: A Fully Semantic-driven Infrared and
Visible Image Fusion [51.22863068854784]
Infrared and visible image fusion plays a vital role in the field of computer vision.
Previous approaches make efforts to design various fusion rules in the loss functions.
We develop a semantic-level fusion network to sufficiently utilize the semantic guidance.
arXiv Detail & Related papers (2022-11-22T13:59:59Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion [72.8898811120795]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.
Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Unsupervised Misaligned Infrared and Visible Image Fusion via
Cross-Modality Image Generation and Registration [59.02821429555375]
We present a robust cross-modality generation-registration paradigm for unsupervised misaligned infrared and visible image fusion.
To better fuse the registered infrared images and visible images, we present a feature Interaction Fusion Module (IFM)
arXiv Detail & Related papers (2022-05-24T07:51:57Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - A Dual-branch Network for Infrared and Visible Image Fusion [20.15854042473049]
We propose a new method based on dense blocks and GANs.
We directly insert the input image-visible light image in each layer of the entire network.
Our experiments show that the fused images obtained by our approach achieve good score based on multiple evaluation indicators.
arXiv Detail & Related papers (2021-01-24T04:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.