SSPFusion: A Semantic Structure-Preserving Approach for Infrared and
Visible Image Fusion
- URL: http://arxiv.org/abs/2309.14745v2
- Date: Tue, 26 Dec 2023 05:36:09 GMT
- Title: SSPFusion: A Semantic Structure-Preserving Approach for Infrared and
Visible Image Fusion
- Authors: Qiao Yang, Yu Zhang, Jian Zhang, Zijing Zhao, Shunli Zhang, Jinqiao
Wang, Junzhe Chen
- Abstract summary: Most existing learning-based infrared and visible image fusion (IVIF) methods exhibit massive redundant information in the fusion images.
We propose a semantic structure-preserving approach for IVIF, namely SSPFusion.
Our method is able to generate high-quality fusion images from pairs of infrared and visible images, which can boost the performance of downstream computer-vision tasks.
- Score: 30.55433673796615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing learning-based infrared and visible image fusion (IVIF) methods
exhibit massive redundant information in the fusion images, i.e., yielding
edge-blurring effect or unrecognizable for object detectors. To alleviate these
issues, we propose a semantic structure-preserving approach for IVIF, namely
SSPFusion. At first, we design a Structural Feature Extractor (SFE) to extract
the structural features of infrared and visible images. Then, we introduce a
multi-scale Structure-Preserving Fusion (SPF) module to fuse the structural
features of infrared and visible images, while maintaining the consistency of
semantic structures between the fusion and source images. Owing to these two
effective modules, our method is able to generate high-quality fusion images
from pairs of infrared and visible images, which can boost the performance of
downstream computer-vision tasks. Experimental results on three benchmarks
demonstrate that our method outperforms eight state-of-the-art image fusion
methods in terms of both qualitative and quantitative evaluations. The code for
our method, along with additional comparison results, will be made available
at: https://github.com/QiaoYang-CV/SSPFUSION.
Related papers
- DAF-Net: A Dual-Branch Feature Decomposition Fusion Network with Domain Adaptive for Infrared and Visible Image Fusion [21.64382683858586]
Infrared and visible image fusion aims to combine complementary information from both modalities to provide a more comprehensive scene understanding.
We propose a dual-branch feature decomposition fusion network (DAF-Net) with Maximum domain adaptive.
By incorporating MK-MMD, the DAF-Net effectively aligns the latent feature spaces of visible and infrared images, thereby improving the quality of the fused images.
arXiv Detail & Related papers (2024-09-18T02:14:08Z) - IAIFNet: An Illumination-Aware Infrared and Visible Image Fusion Network [13.11361803763253]
We propose an Illumination-Aware Infrared and Visible Image Fusion Network, named as IAIFNet.
In our framework, an illumination enhancement network first estimates the incident illumination maps of input images.
With the help of proposed adaptive differential fusion module (ADFM) and salient target aware module (STAM), an image fusion network effectively integrates the salient features of the illumination-enhanced infrared and visible images into a fusion image of high visual quality.
arXiv Detail & Related papers (2023-09-26T15:12:29Z) - Fusion of Infrared and Visible Images based on Spatial-Channel
Attentional Mechanism [3.388001684915793]
We present AMFusionNet, an innovative approach to infrared and visible image fusion (IVIF)
By assimilating thermal details from infrared images with texture features from visible sources, our method produces images enriched with comprehensive information.
Our method outperforms state-of-the-art algorithms in terms of quality and quantity.
arXiv Detail & Related papers (2023-08-25T21:05:11Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
We propose a perception-aware fusion framework to promote segmentation robustness in adversarial scenes.
We show that our scheme substantially enhances the robustness, with gains of 15.3% mIOU, compared with advanced competitors.
arXiv Detail & Related papers (2023-08-08T01:55:44Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
Two major stumbling blocks hinder the development, including pixel misalignment and inefficient inference.
This study introduces an architecture search-based paradigm incorporating self-alignment and detail repletion modules for robust multi-exposure image fusion.
The proposed method outperforms various competitive schemes, achieving a noteworthy 3.19% improvement in PSNR for general scenarios and an impressive 23.5% enhancement in misaligned scenarios.
arXiv Detail & Related papers (2023-05-20T17:01:52Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
This research focuses on the discovery and localization of hidden objects in the wild and serves unmanned systems.
Through empirical analysis, infrared and visible image fusion (IVIF) enables hard-to-find objects apparent.
multimodal salient object detection (SOD) accurately delineates the precise spatial location of objects within the picture.
arXiv Detail & Related papers (2023-05-17T06:48:35Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion [72.8898811120795]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.
Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Unsupervised Image Fusion Method based on Feature Mutual Mapping [16.64607158983448]
We propose an unsupervised adaptive image fusion method to address the above issues.
We construct a global map to measure the connections of pixels between the input source images.
Our method achieves superior performance in both visual perception and objective evaluation.
arXiv Detail & Related papers (2022-01-25T07:50:14Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.