論文の概要: Single Biological Neurons as Temporally Precise Spatio-Temporal Pattern
Recognizers
- arxiv url: http://arxiv.org/abs/2309.15090v1
- Date: Tue, 26 Sep 2023 17:32:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 12:43:25.249959
- Title: Single Biological Neurons as Temporally Precise Spatio-Temporal Pattern
Recognizers
- Title(参考訳): 時空間パターン認識装置としての単一生体ニューロン
- Authors: David Beniaguev
- Abstract要約: 理論は、脳内の単一ニューロンは、時間的に非常に複雑な時間的パターン認識因子と見なされるべきという中心的な考え方に焦点を当てている。
第2章では、特定の時間的入力パターンに応答して、単一ニューロンが時間的に正確な出力パターンを生成できることを実証する。
第3章では、現実的な皮質ニューロンの識別可能な深部ネットワークを用いて、ニューロンの出力の影響を近似する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This PhD thesis is focused on the central idea that single neurons in the
brain should be regarded as temporally precise and highly complex
spatio-temporal pattern recognizers. This is opposed to the prevalent view of
biological neurons as simple and mainly spatial pattern recognizers by most
neuroscientists today. In this thesis, I will attempt to demonstrate that this
is an important distinction, predominantly because the above-mentioned
computational properties of single neurons have far-reaching implications with
respect to the various brain circuits that neurons compose, and on how
information is encoded by neuronal activity in the brain. Namely, that these
particular "low-level" details at the single neuron level have substantial
system-wide ramifications. In the introduction we will highlight the main
components that comprise a neural microcircuit that can perform useful
computations and illustrate the inter-dependence of these components from a
system perspective. In chapter 1 we discuss the great complexity of the
spatio-temporal input-output relationship of cortical neurons that are the
result of morphological structure and biophysical properties of the neuron. In
chapter 2 we demonstrate that single neurons can generate temporally precise
output patterns in response to specific spatio-temporal input patterns with a
very simple biologically plausible learning rule. In chapter 3, we use the
differentiable deep network analog of a realistic cortical neuron as a tool to
approximate the gradient of the output of the neuron with respect to its input
and use this capability in an attempt to teach the neuron to perform nonlinear
XOR operation. In chapter 4 we expand chapter 3 to describe extension of our
ideas to neuronal networks composed of many realistic biological spiking
neurons that represent either small microcircuits or entire brain regions.
- Abstract(参考訳): この博士論文は、脳内の単一ニューロンを時間的精密かつ高度に複雑な時空間パターン認識者と見なすべきという中心的な考え方に焦点を当てている。
これは、現在の多くの神経科学者が、生体ニューロンを単純で主に空間的なパターン認識者として捉えているのとは対照的である。
本論文では,上述した単一ニューロンの計算特性が,ニューロンが構成する様々な脳回路や,脳のニューロン活動によって情報がどのようにエンコードされるかに関して,広範囲にわたる影響を持つため,これが重要な区別であることを示す。
すなわち、単一ニューロンレベルでのこれらの「低いレベル」の詳細は、システム全体の分岐をかなり有している。
はじめに、我々は、有用な計算を実行し、システムの観点からこれらのコンポーネントの相互依存性を説明する神経マイクロ回路を構成する主なコンポーネントを強調する。
第1章では、神経細胞の形態的構造と生物学的性質の結果である皮質ニューロンの時空間入力-出力関係の大きな複雑さについて論じる。
第2章では,特定の時空間入力パターンに応答して,単一ニューロンが時間的に正確な出力パターンを生成できることを示す。
第3章では、現実的な皮質ニューロンの識別可能なディープネットワークアナログを用いて、入力に対するニューロンの出力の勾配を近似し、これをニューロンに非線形XOR操作を教える試みとして利用する。
第4章では、小さなマイクロ回路または全脳領域を表す多くの現実的な生物学的スパイクニューロンからなる神経ネットワークへのアイデアの拡張について解説する。
関連論文リスト
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Learn to integrate parts for whole through correlated neural variability [8.173681663544757]
感覚知覚は感覚ニューロンの反応に起因し、特定の知覚物体の物理的特性に関連付けられた知覚信号の集まりに反応する。
これらの神経反応から脳がどのように知覚情報を抽出するかを明らかにすることは、計算神経科学と機械学習の両方において重要な課題である。
本稿では,知覚情報を知覚ニューロンの相関変数に符号化し,下流ニューロンの発火速度に変換する統計力学理論を提案する。
論文 参考訳(メタデータ) (2024-01-01T13:05:29Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Goal-Driven Approach to Systems Neuroscience [2.6451153531057985]
人間と動物は、動的環境において様々な興味深い行動を示す。
私たちの脳が、こうした行動を可能にするために、どのようにしてこの密集した感覚情報を積極的に再構築するかは不明です。
我々は、ニューラルサーキットの統一構造モデルと機能モデルを生み出すことを約束する新しい解釈可能性の定義を提供する。
論文 参考訳(メタデータ) (2023-11-05T16:37:53Z) - Identifying Interpretable Visual Features in Artificial and Biological
Neural Systems [3.604033202771937]
ニューラルネットワークの単一ニューロンはしばしば、個々の直感的に意味のある特徴を表すものとして解釈される。
多くのニューロンは$textitmixed selectivity$、すなわち複数の無関係な特徴を示す。
本稿では、視覚的解釈可能性の定量化と、ネットワークアクティベーション空間における意味のある方向を見つけるためのアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-17T17:41:28Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Rapid detection and recognition of whole brain activity in a freely
behaving Caenorhabditis elegans [18.788855494800238]
本稿では,脳神経節ニューロンの長期的,迅速な認識のためのカスケードソリューションを提案する。
少数のトレーニングサンプルの制約の下で、ボトムアップアプローチでは、各ボリューム – 1024倍1024倍18ドル – を1秒未満で処理することができます。
我々の研究は、動物行動に基づく脳の活動全体をデコードするための、迅速かつ完全に自動化されたアルゴリズムに向けた重要な発展を示している。
論文 参考訳(メタデータ) (2021-09-22T01:33:54Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。