Identifying Simulation Model Through Alternative Techniques for a
Medical Device Assembly Process
- URL: http://arxiv.org/abs/2309.15094v1
- Date: Tue, 26 Sep 2023 17:40:29 GMT
- Title: Identifying Simulation Model Through Alternative Techniques for a
Medical Device Assembly Process
- Authors: Fatemeh Kakavandi
- Abstract summary: This scientific paper explores two distinct approaches for identifying and approximating the simulation model.
Our goal is to create adaptable models that accurately represent the snap process and can accommodate diverse scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This scientific paper explores two distinct approaches for identifying and
approximating the simulation model, particularly in the context of the snap
process crucial to medical device assembly. Simulation models play a pivotal
role in providing engineers with insights into industrial processes, enabling
experimentation and troubleshooting before physical assembly. However, their
complexity often results in time-consuming computations.
To mitigate this complexity, we present two distinct methods for identifying
simulation models: one utilizing Spline functions and the other harnessing
Machine Learning (ML) models. Our goal is to create adaptable models that
accurately represent the snap process and can accommodate diverse scenarios.
Such models hold promise for enhancing process understanding and aiding in
decision-making, especially when data availability is limited.
Related papers
- Semantic Capability Model for the Simulation of Manufacturing Processes [38.69817856379812]
Simulations offer opportunities in the examination of manufacturing processes.
A combination of different simulations is necessary when the outputs of one simulation serve as the input parameters for another, resulting in a sequence of simulations.
An information model is introduced, which represents simulations, their capabilities to generate certain knowledge, and their respective quality criteria.
arXiv Detail & Related papers (2024-08-15T09:28:08Z) - Learning to Simulate: Generative Metamodeling via Quantile Regression [2.2518304637809714]
We propose a new metamodeling concept, called generative metamodeling, which aims to construct a "fast simulator of the simulator"
Once constructed, a generative metamodel can generate a large amount of random outputs as soon as the inputs are specified.
We propose a new algorithm -- quantile-regression-based generative metamodeling (QRGMM) -- and study its convergence and rate of convergence.
arXiv Detail & Related papers (2023-11-29T16:46:24Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - Learning non-stationary and discontinuous functions using clustering,
classification and Gaussian process modelling [0.0]
We propose a three-stage approach for the approximation of non-smooth functions.
The idea is to split the space following the localized behaviors or regimes of the system and build local surrogates.
The approach is tested and validated on two analytical functions and a finite element model of a tensile membrane structure.
arXiv Detail & Related papers (2022-11-30T11:11:56Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
The paper presents an approach to process mining providing semi-automatic support to model optimization.
A model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity.
We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain.
arXiv Detail & Related papers (2022-06-10T16:20:59Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Model-data-driven constitutive responses: application to a multiscale
computational framework [0.0]
A hybrid methodology is presented which combines classical laws (model-based), a data-driven correction component, and computational multiscale approaches.
A model-based material representation is locally improved with data from lower scales obtained by means of a nonlinear numerical homogenization procedure.
In the proposed approach, both model and data play a fundamental role allowing for the synergistic integration between a physics-based response and a machine learning black-box.
arXiv Detail & Related papers (2021-04-06T16:34:46Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.