Deep Generative Methods for Producing Forecast Trajectories in Power
Systems
- URL: http://arxiv.org/abs/2309.15137v1
- Date: Tue, 26 Sep 2023 14:43:01 GMT
- Title: Deep Generative Methods for Producing Forecast Trajectories in Power
Systems
- Authors: Nathan Weill, Jonathan Dumas
- Abstract summary: Transport System Operators (TSOs) must conduct analyses to simulate the future functioning of power systems.
These simulations are used as inputs in decision-making processes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the expansion of renewables in the electricity mix, power grid
variability will increase, hence a need to robustify the system to guarantee
its security. Therefore, Transport System Operators (TSOs) must conduct
analyses to simulate the future functioning of power systems. Then, these
simulations are used as inputs in decision-making processes. In this context,
we investigate using deep learning models to generate energy production and
load forecast trajectories. To capture the spatiotemporal correlations in these
multivariate time series, we adapt autoregressive networks and normalizing
flows, demonstrating their effectiveness against the current copula-based
statistical approach. We conduct extensive experiments on the French TSO RTE
wind forecast data and compare the different models with \textit{ad hoc}
evaluation metrics for time series generation.
Related papers
- Weather-Informed Probabilistic Forecasting and Scenario Generation in Power Systems [15.393565192962482]
Integration of renewable energy sources into power grids presents significant challenges due to their intrinsicity and uncertainty.
This paper proposes a method combining probabilistic forecasting and Gaussian copula for day-ahead prediction and scenario generation of wind, and solar power in high-dimensional contexts.
arXiv Detail & Related papers (2024-09-11T21:44:59Z) - Sequence-to-Sequence Forecasting-aided State Estimation for Power
Systems [0.0]
This paper proposes an end-to-end deep learning framework to accurately predict multi-step power system state estimations in real-time.
Bidirectional gated recurrent units (BiGRUs) are incorporated into the model to achieve high prediction accuracy.
arXiv Detail & Related papers (2023-05-22T16:46:37Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Validation Methods for Energy Time Series Scenarios from Deep Generative
Models [55.41644538483948]
A popular scenario generation approach uses deep generative models (DGM) that allow scenario generation without prior assumptions about the data distribution.
We provide a critical assessment of the currently used validation methods in the energy scenario generation literature.
We apply the four validation methods to both the historical and the generated data and discuss the interpretation of validation results as well as common mistakes, pitfalls, and limitations of the validation methods.
arXiv Detail & Related papers (2021-10-27T14:14:25Z) - Random vector functional link neural network based ensemble deep
learning for short-term load forecasting [14.184042046855884]
This paper proposes a novel ensemble deep Random Functional Link (edRVFL) network for electricity load forecasting.
The hidden layers are stacked to enforce deep representation learning.
The model generates the forecasts by ensembling the outputs of each layer.
arXiv Detail & Related papers (2021-07-30T01:20:48Z) - Principal Component Density Estimation for Scenario Generation Using
Normalizing Flows [62.997667081978825]
We propose a dimensionality-reducing flow layer based on the linear principal component analysis (PCA) that sets up the normalizing flow in a lower-dimensional space.
We train the resulting principal component flow (PCF) on data of PV and wind power generation as well as load demand in Germany in the years 2013 to 2015.
arXiv Detail & Related papers (2021-04-21T08:42:54Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
An advanced temporal neural network referred to as the Transformer is used within a supervised learning fashion to model the time-dependent NPP simulation data.
The Transformer can learn the characteristics of the sequential data and yield promising performance with approximately 99% classification accuracy on the testing dataset.
arXiv Detail & Related papers (2021-04-09T14:26:25Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Hybrid Neuro-Evolutionary Method for Predicting Wind Turbine Power
Output [6.411829871947649]
We use historical data in the supervisory control and data acquisition (SCADA) systems as input to estimate the power output from an onshore wind farm in Sweden.
With the prior knowledge that the underlying wind patterns are highly non-linear and diverse, we combine a self-adaptive differential evolution (SaDE) algorithm.
We show that our approach outperforms its counterparts.
arXiv Detail & Related papers (2020-04-02T04:22:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.