Homotopy Relaxation Training Algorithms for Infinite-Width Two-Layer ReLU Neural Networks
- URL: http://arxiv.org/abs/2309.15244v3
- Date: Sun, 06 Oct 2024 03:12:12 GMT
- Title: Homotopy Relaxation Training Algorithms for Infinite-Width Two-Layer ReLU Neural Networks
- Authors: Yahong Yang, Qipin Chen, Wenrui Hao,
- Abstract summary: We present a novel training approach called the Homotopy Relaxation Training Algorithm (HRTA)
Our algorithm incorporates two key mechanisms: one involves building a homotopy activation function that seamlessly connects the linear activation function with the ReLU activation function.
We have conducted an in-depth analysis of this novel method within the context of the neural tangent kernel (NTK)
- Score: 1.8434042562191815
- License:
- Abstract: In this paper, we present a novel training approach called the Homotopy Relaxation Training Algorithm (HRTA), aimed at accelerating the training process in contrast to traditional methods. Our algorithm incorporates two key mechanisms: one involves building a homotopy activation function that seamlessly connects the linear activation function with the ReLU activation function; the other technique entails relaxing the homotopy parameter to enhance the training refinement process. We have conducted an in-depth analysis of this novel method within the context of the neural tangent kernel (NTK), revealing significantly improved convergence rates. Our experimental results, especially when considering networks with larger widths, validate the theoretical conclusions. This proposed HRTA exhibits the potential for other activation functions and deep neural networks.
Related papers
- Stochastic Gradient Descent for Two-layer Neural Networks [2.0349026069285423]
This paper presents a study on the convergence rates of the descent (SGD) algorithm when applied to overparameterized two-layer neural networks.
Our approach combines the Tangent Kernel (NTK) approximation with convergence analysis in the Reproducing Kernel Space (RKHS) generated by NTK.
Our research framework enables us to explore the intricate interplay between kernel methods and optimization processes, shedding light on the dynamics and convergence properties of neural networks.
arXiv Detail & Related papers (2024-07-10T13:58:57Z) - Improved weight initialization for deep and narrow feedforward neural network [3.0784574277021397]
The problem of textquotedblleft dying ReLU," where ReLU neurons become inactive and yield zero output, presents a significant challenge in the training of deep neural networks with ReLU activation function.
We propose a novel weight initialization method to address this issue.
arXiv Detail & Related papers (2023-11-07T05:28:12Z) - ENN: A Neural Network with DCT Adaptive Activation Functions [2.2713084727838115]
We present Expressive Neural Network (ENN), a novel model in which the non-linear activation functions are modeled using the Discrete Cosine Transform (DCT)
This parametrization keeps the number of trainable parameters low, is appropriate for gradient-based schemes, and adapts to different learning tasks.
The performance of ENN outperforms state of the art benchmarks, providing above a 40% gap in accuracy in some scenarios.
arXiv Detail & Related papers (2023-07-02T21:46:30Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Provable Acceleration of Nesterov's Accelerated Gradient Method over Heavy Ball Method in Training Over-Parameterized Neural Networks [12.475834086073734]
First-order gradient method has been extensively employed in training neural networks.
Recent research has proved that the first neural-order method is capable of attaining a global minimum convergence.
arXiv Detail & Related papers (2022-08-08T07:13:26Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
We show theoretically that temporal difference learning encourages agents to fit non-smooth components of the value function early in training.
We show that neural networks trained using temporal difference algorithms on dense reward tasks exhibit weaker generalization between states than randomly networks and gradient networks trained with policy methods.
arXiv Detail & Related papers (2022-06-05T08:49:16Z) - Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic [137.04558017227583]
Actor-critic (AC) algorithms, empowered by neural networks, have had significant empirical success in recent years.
We take a mean-field perspective on the evolution and convergence of feature-based neural AC.
We prove that neural AC finds the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2021-12-27T06:09:50Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.