DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism
- URL: http://arxiv.org/abs/2309.15324v1
- Date: Wed, 27 Sep 2023 00:10:29 GMT
- Title: DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism
- Authors: Jin Wang, Zishan Huang, Hengli Liu, Nianyi Yang, Yinhao Xiao,
- Abstract summary: DefectHunter is an innovative model for vulnerability identification that employs the Conformer mechanism.
This mechanism fuses self-attention with convolutional networks to capture both local, position-wise features and global, content-based interactions.
- Score: 3.9377491512285157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most pressing threats to computing systems is software vulnerabilities, which can compromise both hardware and software components. Existing methods for vulnerability detection remain suboptimal. Traditional techniques are both time-consuming and labor-intensive, while machine-learning-based approaches often underperform when applied to complex datasets, due to their inability to capture high-dimensional relationships. Previous deep-learning strategies also fall short in capturing sufficient feature information. Although self-attention mechanisms can process information over long distances, they fail to capture structural information. In this paper, we introduce DefectHunter, an innovative model for vulnerability identification that employs the Conformer mechanism. This mechanism fuses self-attention with convolutional networks to capture both local, position-wise features and global, content-based interactions. Furthermore, we optimize the self-attention mechanisms to mitigate the issue of excessive attention heads introducing extraneous noise by adjusting the denominator. We evaluated DefectHunter against ten baseline methods using six industrial and two highly complex datasets. On the QEMU dataset, DefectHunter exhibited a 20.62\% improvement in accuracy over Pongo-70B, and for the CWE-754 dataset, its accuracy was 14.64\% higher. To investigate how DefectHunter comprehends vulnerabilities, we conducted a case study, which revealed that our model effectively understands the mechanisms underlying vulnerabilities.
Related papers
- CRepair: CVAE-based Automatic Vulnerability Repair Technology [1.147605955490786]
Software vulnerabilities pose significant threats to the integrity, security, and reliability of modern software and its application data.
To address the challenges of vulnerability repair, researchers have proposed various solutions, with learning-based automatic vulnerability repair techniques gaining widespread attention.
This paper proposes CRepair, a CVAE-based automatic vulnerability repair technology aimed at fixing security vulnerabilities in system code.
arXiv Detail & Related papers (2024-11-08T12:55:04Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Attention-GAN for Anomaly Detection: A Cutting-Edge Approach to
Cybersecurity Threat Management [0.0]
This paper proposes an innovative Attention-GAN framework for enhancing cybersecurity, focusing on anomaly detection.
The proposed approach aims to generate diverse and realistic synthetic attack scenarios, thereby enriching the dataset and improving threat identification.
Integrating attention mechanisms with Generative Adversarial Networks (GANs) is a key feature of the proposed method.
The attention-GAN framework has emerged as a pioneering approach, setting a new benchmark for advanced cyber-defense strategies.
arXiv Detail & Related papers (2024-02-25T01:10:55Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
We propose an enhancement to an existing few-shot weakly-supervised deep learning anomaly detection framework.
This framework incorporates data augmentation, representation learning and ordinal regression.
We then evaluated and showed the performance of our implemented framework on three benchmark datasets.
arXiv Detail & Related papers (2023-04-15T04:37:54Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - V2W-BERT: A Framework for Effective Hierarchical Multiclass
Classification of Software Vulnerabilities [7.906207218788341]
We present a novel Transformer-based learning framework (V2W-BERT) in this paper.
By using ideas from natural language processing, link prediction and transfer learning, our method outperforms previous approaches.
We achieve up to 97% prediction accuracy for randomly partitioned data and up to 94% prediction accuracy in temporally partitioned data.
arXiv Detail & Related papers (2021-02-23T05:16:57Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.