Verification of Machine Unlearning is Fragile
- URL: http://arxiv.org/abs/2408.00929v1
- Date: Thu, 1 Aug 2024 21:37:10 GMT
- Title: Verification of Machine Unlearning is Fragile
- Authors: Binchi Zhang, Zihan Chen, Cong Shen, Jundong Li,
- Abstract summary: We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
- Score: 48.71651033308842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As privacy concerns escalate in the realm of machine learning, data owners now have the option to utilize machine unlearning to remove their data from machine learning models, following recent legislation. To enhance transparency in machine unlearning and avoid potential dishonesty by model providers, various verification strategies have been proposed. These strategies enable data owners to ascertain whether their target data has been effectively unlearned from the model. However, our understanding of the safety issues of machine unlearning verification remains nascent. In this paper, we explore the novel research question of whether model providers can circumvent verification strategies while retaining the information of data supposedly unlearned. Our investigation leads to a pessimistic answer: \textit{the verification of machine unlearning is fragile}. Specifically, we categorize the current verification strategies regarding potential dishonesty among model providers into two types. Subsequently, we introduce two novel adversarial unlearning processes capable of circumventing both types. We validate the efficacy of our methods through theoretical analysis and empirical experiments using real-world datasets. This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
Related papers
- RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Large language models trained on web-scale corpora can memorize undesirable datapoints.
Many machine unlearning methods have been proposed that aim to 'erase' these datapoints from trained models.
We propose the RESTOR framework for machine unlearning based on the following dimensions.
arXiv Detail & Related papers (2024-10-31T20:54:35Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning [16.809644622465086]
We conduct the first investigation to understand the extent to which machine unlearning can leak the confidential content of unlearned data.
Under the Machine Learning as a Service setting, we propose unlearning inversion attacks that can reveal the feature and label information of an unlearned sample.
The experimental results indicate that the proposed attack can reveal the sensitive information of the unlearned data.
arXiv Detail & Related papers (2024-04-04T06:37:46Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - A Duty to Forget, a Right to be Assured? Exposing Vulnerabilities in Machine Unlearning Services [31.347825826778276]
We try to explore the potential threats posed by unlearning services in Machine Learning (ML)
We propose two strategies that leverage over-unlearning to measure the impact on the trade-off balancing.
Results indicate significant potential for both strategies to undermine model efficacy in unlearning scenarios.
arXiv Detail & Related papers (2023-09-15T08:00:45Z) - Machine Unlearning: Solutions and Challenges [21.141664917477257]
Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation.
To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models.
This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning.
arXiv Detail & Related papers (2023-08-14T10:45:51Z) - Learn to Unlearn: A Survey on Machine Unlearning [29.077334665555316]
This article presents a review of recent machine unlearning techniques, verification mechanisms, and potential attacks.
We highlight emerging challenges and prospective research directions.
We aim for this paper to provide valuable resources for integrating privacy, equity, andresilience into ML systems.
arXiv Detail & Related papers (2023-05-12T14:28:02Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Adversarial Attacks on Machine Learning Systems for High-Frequency
Trading [55.30403936506338]
We study valuation models for algorithmic trading from the perspective of adversarial machine learning.
We introduce new attacks specific to this domain with size constraints that minimize attack costs.
We discuss how these attacks can be used as an analysis tool to study and evaluate the robustness properties of financial models.
arXiv Detail & Related papers (2020-02-21T22:04:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.