Graph Neural Prompting with Large Language Models
- URL: http://arxiv.org/abs/2309.15427v2
- Date: Thu, 28 Dec 2023 21:14:01 GMT
- Title: Graph Neural Prompting with Large Language Models
- Authors: Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang,
Nitesh V. Chawla, Panpan Xu
- Abstract summary: Graph Neural Prompting (GNP) is a novel plug-and-play method to assist pre-trained language models in learning beneficial knowledge from knowledge graphs.
Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks.
- Score: 32.97391910476073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown remarkable generalization capability
with exceptional performance in various language modeling tasks. However, they
still exhibit inherent limitations in precisely capturing and returning
grounded knowledge. While existing work has explored utilizing knowledge graphs
(KGs) to enhance language modeling via joint training and customized model
architectures, applying this to LLMs is problematic owing to their large number
of parameters and high computational cost. Therefore, how to enhance
pre-trained LLMs using grounded knowledge, e.g., retrieval-augmented
generation, remains an open question. In this work, we propose Graph Neural
Prompting (GNP), a novel plug-and-play method to assist pre-trained LLMs in
learning beneficial knowledge from KGs. GNP encompasses various designs,
including a standard graph neural network encoder, a cross-modality pooling
module, a domain projector, and a self-supervised link prediction objective.
Extensive experiments on multiple datasets demonstrate the superiority of GNP
on both commonsense and biomedical reasoning tasks across different LLM sizes
and settings. Code is available at https://github.com/meettyj/GNP.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Large Language Models Can Better Understand Knowledge Graphs Than We Thought [13.336418752729987]
knowledge graph (KG) embeddings with model parameters become increasingly costly.
Current prompting methods often rely on a trial-and-error approach.
We show that unordered linearized triples are more effective for LLMs' understanding of KGs compared to fluent NL text.
arXiv Detail & Related papers (2024-02-18T10:44:03Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
We propose a subgraph-aware self-attention mechanism to imitate the GNN for performing structured reasoning.
We also adopt an adaptation tuning strategy to adapt the model parameters with 20,000 subgraphs with synthesized questions.
Experiments show that ReasoningLM surpasses state-of-the-art models by a large margin, even with fewer updated parameters and less training data.
arXiv Detail & Related papers (2023-12-30T07:18:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z) - Give Us the Facts: Enhancing Large Language Models with Knowledge Graphs
for Fact-aware Language Modeling [34.59678835272862]
ChatGPT, a representative large language model (LLM), has gained considerable attention due to its powerful emergent abilities.
This paper proposes to enhance LLMs with knowledge graph-enhanced large language models (KGLLMs)
KGLLM provides a solution to enhance LLMs' factual reasoning ability, opening up new avenues for LLM research.
arXiv Detail & Related papers (2023-06-20T12:21:06Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.