Large Language Models Can Better Understand Knowledge Graphs Than We Thought
- URL: http://arxiv.org/abs/2402.11541v3
- Date: Sun, 16 Jun 2024 14:16:56 GMT
- Title: Large Language Models Can Better Understand Knowledge Graphs Than We Thought
- Authors: Xinbang Dai, Yuncheng Hua, Tongtong Wu, Yang Sheng, Qiu Ji, Guilin Qi,
- Abstract summary: knowledge graph (KG) embeddings with model parameters become increasingly costly.
Current prompting methods often rely on a trial-and-error approach.
We show that unordered linearized triples are more effective for LLMs' understanding of KGs compared to fluent NL text.
- Score: 13.336418752729987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the parameter scale of large language models (LLMs) grows, jointly training knowledge graph (KG) embeddings with model parameters to enhance LLM capabilities becomes increasingly costly. Consequently, the community has shown interest in developing prompt strategies that effectively integrate KG information into LLMs. However, the format for incorporating KGs into LLMs lacks standardization; for instance, KGs can be transformed into linearized triples or natural language (NL) text. Current prompting methods often rely on a trial-and-error approach, leaving researchers with an incomplete understanding of which KG input format best facilitates LLM comprehension of KG content. To elucidate this, we design a series of experiments to explore LLMs' understanding of different KG input formats within the context of prompt engineering. Our analysis examines both literal and attention distribution levels. Through extensive experiments, we indicate a counter-intuitive phenomenon: when addressing fact-related questions, unordered linearized triples are more effective for LLMs' understanding of KGs compared to fluent NL text. Furthermore, noisy, incomplete, or marginally relevant subgraphs can still enhance LLM performance. Finally, different LLMs have distinct preferences for different formats of organizing unordered triples.
Related papers
- Ontology Population using LLMs [0.9894420655516563]
Knowledge graphs (KGs) are increasingly utilized for data integration, representation, and visualization.
LLMs offer promising capabilities for such tasks, excelling in natural language understanding and content generation.
This study investigates LLM effectiveness for the KG population, focusing on the Enslaved.org Hub Ontology.
arXiv Detail & Related papers (2024-11-03T15:39:20Z) - Comprehending Knowledge Graphs with Large Language Models for Recommender Systems [13.270018897057293]
We propose a novel method called CoLaKG, which leverages large language models for knowledge-aware recommendation.
We first extract subgraphs centered on each item from the KG and convert them into textual inputs for the LLM.
The LLM then outputs its comprehension of these item-centered subgraphs, which are subsequently transformed into semantic embeddings.
arXiv Detail & Related papers (2024-10-16T04:44:34Z) - MKGL: Mastery of a Three-Word Language [48.04522048179973]
We introduce a specialized KG Language (KGL), where a sentence precisely consists of an entity noun, a relation verb, and ends with another entity noun.
Despite KGL's unfamiliar vocabulary to the LLM, we facilitate its learning through a tailored dictionary and illustrative sentences.
Our results reveal that LLMs can achieve fluency in KGL, drastically reducing errors compared to conventional KG embedding methods.
arXiv Detail & Related papers (2024-10-10T01:39:26Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Combining Knowledge Graphs and Large Language Models [4.991122366385628]
Large language models (LLMs) show astonishing results in language understanding and generation.
They still show some disadvantages, such as hallucinations and lack of domain-specific knowledge.
These issues can be effectively mitigated by incorporating knowledge graphs (KGs)
This work collected 28 papers outlining methods for KG-powered LLMs, LLM-based KGs, and LLM-KG hybrid approaches.
arXiv Detail & Related papers (2024-07-09T05:42:53Z) - Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
Large Language Models (LLMs) have shown unprecedented performance in various real-world applications.
LLMs are known to generate factually inaccurate outputs, a.k.a. the hallucination problem.
We propose a principled framework KELP with three stages to handle the above problems.
arXiv Detail & Related papers (2024-06-19T21:45:20Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
Large Language Models (LLMs) are effective in performing various NLP tasks, but struggle to handle tasks that require extensive, real-world knowledge.
We propose a benchmark that requires knowledge of long-tail facts for answering the involved questions.
Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required.
arXiv Detail & Related papers (2024-05-10T15:10:20Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Give Us the Facts: Enhancing Large Language Models with Knowledge Graphs
for Fact-aware Language Modeling [34.59678835272862]
ChatGPT, a representative large language model (LLM), has gained considerable attention due to its powerful emergent abilities.
This paper proposes to enhance LLMs with knowledge graph-enhanced large language models (KGLLMs)
KGLLM provides a solution to enhance LLMs' factual reasoning ability, opening up new avenues for LLM research.
arXiv Detail & Related papers (2023-06-20T12:21:06Z) - Unifying Large Language Models and Knowledge Graphs: A Roadmap [61.824618473293725]
Large language models (LLMs) are making new waves in the field of natural language processing and artificial intelligence.
Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge.
arXiv Detail & Related papers (2023-06-14T07:15:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.