DTC: Deep Tracking Control
- URL: http://arxiv.org/abs/2309.15462v2
- Date: Mon, 22 Jan 2024 17:02:16 GMT
- Title: DTC: Deep Tracking Control
- Authors: Fabian Jenelten, Junzhe He, Farbod Farshidian, Marco Hutter
- Abstract summary: We propose a hybrid control architecture that combines the advantages of both worlds to achieve greater robustness, foot-placement accuracy, and terrain generalization.
A deep neural network policy is trained in simulation, aiming to track the optimized footholds.
We demonstrate superior robustness in the presence of slippery or deformable ground when compared to model-based counterparts.
- Score: 16.2850135844455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legged locomotion is a complex control problem that requires both accuracy
and robustness to cope with real-world challenges. Legged systems have
traditionally been controlled using trajectory optimization with inverse
dynamics. Such hierarchical model-based methods are appealing due to intuitive
cost function tuning, accurate planning, generalization, and most importantly,
the insightful understanding gained from more than one decade of extensive
research. However, model mismatch and violation of assumptions are common
sources of faulty operation. Simulation-based reinforcement learning, on the
other hand, results in locomotion policies with unprecedented robustness and
recovery skills. Yet, all learning algorithms struggle with sparse rewards
emerging from environments where valid footholds are rare, such as gaps or
stepping stones. In this work, we propose a hybrid control architecture that
combines the advantages of both worlds to simultaneously achieve greater
robustness, foot-placement accuracy, and terrain generalization. Our approach
utilizes a model-based planner to roll out a reference motion during training.
A deep neural network policy is trained in simulation, aiming to track the
optimized footholds. We evaluate the accuracy of our locomotion pipeline on
sparse terrains, where pure data-driven methods are prone to fail. Furthermore,
we demonstrate superior robustness in the presence of slippery or deformable
ground when compared to model-based counterparts. Finally, we show that our
proposed tracking controller generalizes across different trajectory
optimization methods not seen during training. In conclusion, our work unites
the predictive capabilities and optimality guarantees of online planning with
the inherent robustness attributed to offline learning.
Related papers
- 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT) is essential for intelligent systems like autonomous driving and robotic sensing.
We propose a GRU-based MOT method, which introduces a learnable Kalman filter into the motion module.
This approach is able to learn object motion characteristics through data-driven learning, thereby avoiding the need for manual model design and model error.
arXiv Detail & Related papers (2024-11-13T08:34:07Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - RLOC: Terrain-Aware Legged Locomotion using Reinforcement Learning and
Optimal Control [6.669503016190925]
We present a unified model-based and data-driven approach for quadrupedal planning and control.
We map sensory information and desired base velocity commands into footstep plans using a reinforcement learning policy.
We train and evaluate our framework on a complex quadrupedal system, ANYmal B, and demonstrate transferability to a larger and heavier robot, ANYmal C, without requiring retraining.
arXiv Detail & Related papers (2020-12-05T18:30:23Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
Online algorithms are popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches.
When a constant step-size is used, these algorithms also have the ability to adapt to drifts in problem parameters, such as data or model properties, and track the optimal solution with reasonable accuracy.
We establish a link between steady-state performance derived under stationarity assumptions and the tracking performance of online learners under random walk models.
arXiv Detail & Related papers (2020-04-04T14:16:27Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.