Joint Sampling and Optimisation for Inverse Rendering
- URL: http://arxiv.org/abs/2309.15676v1
- Date: Wed, 27 Sep 2023 14:21:13 GMT
- Title: Joint Sampling and Optimisation for Inverse Rendering
- Authors: Martin Balint, Karol Myszkowski, Hans-Peter Seidel, Gurprit Singh
- Abstract summary: Averaging many gradient samples in each iteration reduces this variance trivially.
We derive a theoretical framework for interleaving sampling and optimisation.
We implement our method for inverse path tracing and demonstrate how our estimator speeds up convergence on difficult optimisation tasks.
- Score: 24.290038684298164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When dealing with difficult inverse problems such as inverse rendering, using
Monte Carlo estimated gradients to optimise parameters can slow down
convergence due to variance. Averaging many gradient samples in each iteration
reduces this variance trivially. However, for problems that require thousands
of optimisation iterations, the computational cost of this approach rises
quickly.
We derive a theoretical framework for interleaving sampling and optimisation.
We update and reuse past samples with low-variance finite-difference estimators
that describe the change in the estimated gradients between each iteration. By
combining proportional and finite-difference samples, we continuously reduce
the variance of our novel gradient meta-estimators throughout the optimisation
process. We investigate how our estimator interlinks with Adam and derive a
stable combination.
We implement our method for inverse path tracing and demonstrate how our
estimator speeds up convergence on difficult optimisation tasks.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
We study shuffling-based variants: minibatch and local Random Reshuffling, which draw gradients without replacement.
For smooth functions satisfying the Polyak-Lojasiewicz condition, we obtain convergence bounds which show that these shuffling-based variants converge faster than their with-replacement counterparts.
We propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.
arXiv Detail & Related papers (2021-10-20T02:25:25Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Quantized Variational Inference [6.09170287691728]
We show how Quantized Variational Inference produces variance free gradients for ELBO optimization.
We show that using Quantized Variational Inference framework leads to fast convergence for both score function and reparametrized gradient.
arXiv Detail & Related papers (2020-11-04T13:22:50Z) - Incremental Without Replacement Sampling in Nonconvex Optimization [0.0]
Minibatch decomposition methods for empirical risk are commonly analysed in an approximation setting, also known as sampling with replacement.
On the other hands modern implementations of such techniques are incremental: they rely on sampling without replacement, for which available analysis are much scarcer.
We provide convergence guaranties for the latter variant by analysing a versatile incremental gradient scheme.
arXiv Detail & Related papers (2020-07-15T09:17:29Z) - Minimal Variance Sampling with Provable Guarantees for Fast Training of
Graph Neural Networks [22.618779809748435]
Existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization.
We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance.
We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization.
arXiv Detail & Related papers (2020-06-24T16:49:29Z) - Amortized variance reduction for doubly stochastic objectives [17.064916635597417]
Approximate inference in complex probabilistic models requires optimisation of doubly objective functions.
Current approaches do not take into account how mini-batchity affects samplingity, resulting in sub-optimal variance reduction.
We propose a new approach in which we use a recognition network to cheaply approximate the optimal control variate for each mini-batch, with no additional gradient computations.
arXiv Detail & Related papers (2020-03-09T13:23:14Z) - Variance Reduction with Sparse Gradients [82.41780420431205]
Variance reduction methods such as SVRG and SpiderBoost use a mixture of large and small batch gradients.
We introduce a new sparsity operator: The random-top-k operator.
Our algorithm consistently outperforms SpiderBoost on various tasks including image classification, natural language processing, and sparse matrix factorization.
arXiv Detail & Related papers (2020-01-27T08:23:58Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level.
We show minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estimators.
arXiv Detail & Related papers (2020-01-15T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.