Randomised Splitting Methods and Stochastic Gradient Descent
- URL: http://arxiv.org/abs/2504.04274v1
- Date: Sat, 05 Apr 2025 20:07:34 GMT
- Title: Randomised Splitting Methods and Stochastic Gradient Descent
- Authors: Luke Shaw, Peter A. Whalley,
- Abstract summary: We introduce a new minibatching strategy (called Symmetric Minibatching Strategy) for gradient optimisation.<n>We provide improved convergence guarantees for this new minibatching strategy using Lynov techniques.<n>We argue that this also leads to a faster convergence rate when considering a decreasing stepsize schedule.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore an explicit link between stochastic gradient descent using common batching strategies and splitting methods for ordinary differential equations. From this perspective, we introduce a new minibatching strategy (called Symmetric Minibatching Strategy) for stochastic gradient optimisation which shows greatly reduced stochastic gradient bias (from $\mathcal{O}(h^2)$ to $\mathcal{O}(h^4)$ in the optimiser stepsize $h$), when combined with momentum-based optimisers. We justify why momentum is needed to obtain the improved performance using the theory of backward analysis for splitting integrators and provide a detailed analytic computation of the stochastic gradient bias on a simple example. Further, we provide improved convergence guarantees for this new minibatching strategy using Lyapunov techniques that show reduced stochastic gradient bias for a fixed stepsize (or learning rate) over the class of strongly-convex and smooth objective functions. Via the same techniques we also improve the known results for the Random Reshuffling strategy for stochastic gradient descent methods with momentum. We argue that this also leads to a faster convergence rate when considering a decreasing stepsize schedule. Both the reduced bias and efficacy of decreasing stepsizes are demonstrated numerically on several motivating examples.
Related papers
- An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes [17.804065824245402]
In machine learning applications, each loss function is non-negative and can be expressed as the composition of a square and its real-valued square root.
We show how to apply the Gauss-Newton method or the Levssquardt method to minimize the average of smooth but possibly non-negative functions.
arXiv Detail & Related papers (2024-07-05T08:53:06Z) - Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
We propose a novel algorithm for distributed gradient descent (SGD) with compressed gradient communication in the parameter-server framework.
Our gradient compression technique, named flattened one-bit gradient descent (FO-SGD), relies on two simple algorithmic ideas.
arXiv Detail & Related papers (2024-05-17T21:17:27Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - One-step corrected projected stochastic gradient descent for statistical estimation [49.1574468325115]
It is based on the projected gradient descent on the log-likelihood function corrected by a single step of the Fisher scoring algorithm.
We show theoretically and by simulations that it is an interesting alternative to the usual gradient descent with averaging or the adaptative gradient descent.
arXiv Detail & Related papers (2023-06-09T13:43:07Z) - On the influence of roundoff errors on the convergence of the gradient
descent method with low-precision floating-point computation [0.0]
We propose a new rounding scheme that trades the zero bias property with a larger probability to preserve small gradients.
Our method yields constant rounding bias that, at each iteration, lies in a descent direction.
arXiv Detail & Related papers (2022-02-24T18:18:20Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
We propose a new accelerated first-order method called clipped-SSTM for smooth convex optimization with heavy-tailed distributed noise in gradients.
We prove new complexity that outperform state-of-the-art results in this case.
We derive the first non-trivial high-probability complexity bounds for SGD with clipping without light-tails assumption on the noise.
arXiv Detail & Related papers (2020-05-21T17:05:27Z) - Non-asymptotic bounds for stochastic optimization with biased noisy
gradient oracles [8.655294504286635]
We introduce biased gradient oracles to capture a setting where the function measurements have an estimation error.
Our proposed oracles are in practical contexts, for instance, risk measure estimation from a batch of independent and identically distributed simulation.
arXiv Detail & Related papers (2020-02-26T12:53:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.