Physics Inspired Hybrid Attention for SAR Target Recognition
- URL: http://arxiv.org/abs/2309.15697v1
- Date: Wed, 27 Sep 2023 14:39:41 GMT
- Title: Physics Inspired Hybrid Attention for SAR Target Recognition
- Authors: Zhongling Huang, Chong Wu, Xiwen Yao, Zhicheng Zhao, Xiankai Huang,
Junwei Han
- Abstract summary: We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
- Score: 61.01086031364307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a recent emphasis on integrating physical models and deep
neural networks (DNNs) for SAR target recognition, to improve performance and
achieve a higher level of physical interpretability. The attributed scattering
center (ASC) parameters garnered the most interest, being considered as
additional input data or features for fusion in most methods. However, the
performance greatly depends on the ASC optimization result, and the fusion
strategy is not adaptable to different types of physical information.
Meanwhile, the current evaluation scheme is inadequate to assess the model's
robustness and generalizability. Thus, we propose a physics inspired hybrid
attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to
address the above issues. PIHA leverages the high-level semantics of physical
information to activate and guide the feature group aware of local semantics of
target, so as to re-weight the feature importance based on knowledge prior. It
is flexible and generally applicable to various physical models, and can be
integrated into arbitrary DNNs without modifying the original architecture. The
experiments involve a rigorous assessment using the proposed OFA, which entails
training and validating a model on either sufficient or limited data and
evaluating on multiple test sets with different data distributions. Our method
outperforms other state-of-the-art approaches in 12 test scenarios with same
ASC parameters. Moreover, we analyze the working mechanism of PIHA and evaluate
various PIHA enabled DNNs. The experiments also show PIHA is effective for
different physical information. The source code together with the adopted
physical information is available at https://github.com/XAI4SAR.
Related papers
- Fine-tuning -- a Transfer Learning approach [0.22344294014777952]
Missingness in Electronic Health Records (EHRs) is often hampered by the abundance of missing data in this valuable resource.
Existing deep imputation methods rely on end-to-end pipelines that incorporate both imputation and downstream analyses.
This paper explores the development of a modular, deep learning-based imputation and classification pipeline.
arXiv Detail & Related papers (2024-11-06T14:18:23Z) - Feasibility Analysis of Federated Neural Networks for Explainable Detection of Atrial Fibrillation [1.6053176639259055]
Early detection of atrial fibrillation (AFib) is challenging due to its asymptomatic and paroxysmal nature.
This study assesses the feasibility of training a neural network on a Federated Learning (FL) platform to detect AFib using raw ECG data.
arXiv Detail & Related papers (2024-10-14T15:06:10Z) - SSPNet: Scale and Spatial Priors Guided Generalizable and Interpretable
Pedestrian Attribute Recognition [23.55622798950833]
A novel Scale and Spatial Priors Guided Network (SSPNet) is proposed for Pedestrian Attribute Recognition (PAR) models.
SSPNet learns to provide reasonable scale prior information for different attribute groups, allowing the model to focus on different levels of feature maps.
A novel IoU based attribute localization metric is proposed for Weakly-supervised Pedestrian Attribute localization (WPAL) based on the improved Grad-CAM for attribute response mask.
arXiv Detail & Related papers (2023-12-11T00:41:40Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Understanding Self-attention Mechanism via Dynamical System Perspective [58.024376086269015]
Self-attention mechanism (SAM) is widely used in various fields of artificial intelligence.
We show that intrinsic stiffness phenomenon (SP) in the high-precision solution of ordinary differential equations (ODEs) also widely exists in high-performance neural networks (NN)
We show that the SAM is also a stiffness-aware step size adaptor that can enhance the model's representational ability to measure intrinsic SP.
arXiv Detail & Related papers (2023-08-19T08:17:41Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Improving Parametric Neural Networks for High-Energy Physics (and
Beyond) [0.0]
We aim at deepening the understanding of Parametric Neural Network (pNN) networks in light of real-world usage.
We propose an alternative parametrization scheme, resulting in a new parametrized neural network architecture: the AffinePNN.
We extensively evaluate our models on the HEPMASS dataset, along its imbalanced version (called HEPMASS-IMB)
arXiv Detail & Related papers (2022-02-01T14:18:43Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.