Improving Parametric Neural Networks for High-Energy Physics (and
Beyond)
- URL: http://arxiv.org/abs/2202.00424v2
- Date: Wed, 2 Feb 2022 08:17:02 GMT
- Title: Improving Parametric Neural Networks for High-Energy Physics (and
Beyond)
- Authors: Luca Anzalone, Tommaso Diotalevi and Daniele Bonacorsi
- Abstract summary: We aim at deepening the understanding of Parametric Neural Network (pNN) networks in light of real-world usage.
We propose an alternative parametrization scheme, resulting in a new parametrized neural network architecture: the AffinePNN.
We extensively evaluate our models on the HEPMASS dataset, along its imbalanced version (called HEPMASS-IMB)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Signal-background classification is a central problem in High-Energy Physics,
that plays a major role for the discovery of new fundamental particles. A
recent method -- the Parametric Neural Network (pNN) -- leverages multiple
signal mass hypotheses as an additional input feature to effectively replace a
whole set of individual classifier, each providing (in principle) the best
response for a single mass hypothesis. In this work we aim at deepening the
understanding of pNNs in light of real-world usage. We discovered several
peculiarities of parametric networks, providing intuition, metrics, and
guidelines to them. We further propose an alternative parametrization scheme,
resulting in a new parametrized neural network architecture: the AffinePNN;
along with many other generally applicable improvements. Finally, we
extensively evaluate our models on the HEPMASS dataset, along its imbalanced
version (called HEPMASS-IMB) we provide here for the first time to further
validate our approach. Provided results are in terms of the impact of the
proposed design decisions, classification performance, and interpolation
capability as well.
Related papers
- Initialization-enhanced Physics-Informed Neural Network with Domain Decomposition (IDPINN) [14.65008276932511]
We propose a new physics-informed neural network framework, IDPINN, to improve prediction accuracy.
We numerically evaluated it on several forward problems and demonstrated the benefits of IDPINN in terms of accuracy.
arXiv Detail & Related papers (2024-06-05T12:03:45Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
Training a high-quality deep neural network requires choosing suitable hyperparameters, which is a non-trivial and expensive process.
In this work, we precisely characterize the dependence of initializations and maximal learning rates on the network architecture.
We demonstrate that network rankings can be easily changed by better training networks in benchmarks.
arXiv Detail & Related papers (2024-02-27T11:52:49Z) - Dynamically configured physics-informed neural network in topology
optimization applications [4.403140515138818]
The physics-informed neural network (PINN) can avoid generating enormous amounts of data when solving forward problems.
A dynamically configured PINN-based topology optimization (DCPINN-TO) method is proposed.
The accuracy of the displacement prediction and optimization results indicate that the DCPINN-TO method is effective and efficient.
arXiv Detail & Related papers (2023-12-12T05:35:30Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Neural Characteristic Activation Analysis and Geometric Parameterization for ReLU Networks [2.2713084727838115]
We introduce a novel approach for analyzing the training dynamics of ReLU networks by examining the characteristic activation boundaries of individual neurons.
Our proposed analysis reveals a critical instability in common neural network parameterizations and normalizations during convergence optimization, which impedes fast convergence and hurts performance.
arXiv Detail & Related papers (2023-05-25T10:19:13Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Orthogonal Stochastic Configuration Networks with Adaptive Construction
Parameter for Data Analytics [6.940097162264939]
randomness makes SCNs more likely to generate approximate linear correlative nodes that are redundant and low quality.
In light of a fundamental principle in machine learning, that is, a model with fewer parameters holds improved generalization.
This paper proposes orthogonal SCN, termed OSCN, to filtrate out the low-quality hidden nodes for network structure reduction.
arXiv Detail & Related papers (2022-05-26T07:07:26Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to learning and discovery in solid mechanics.
We explain how to incorporate the momentum balance and elasticity relations into PINN, and explore in detail the application to linear elasticity.
arXiv Detail & Related papers (2020-02-14T08:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.