Factorized Diffusion Architectures for Unsupervised Image Generation and
Segmentation
- URL: http://arxiv.org/abs/2309.15726v2
- Date: Fri, 8 Dec 2023 23:16:19 GMT
- Title: Factorized Diffusion Architectures for Unsupervised Image Generation and
Segmentation
- Authors: Xin Yuan, Michael Maire
- Abstract summary: We develop a neural network architecture which, trained in an unsupervised manner as a denoising diffusion model, simultaneously learns to both generate and segment images.
Experiments demonstrate that our model achieves accurate unsupervised image segmentation and high-quality synthetic image generation across multiple datasets.
- Score: 24.436957604430678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a neural network architecture which, trained in an unsupervised
manner as a denoising diffusion model, simultaneously learns to both generate
and segment images. Learning is driven entirely by the denoising diffusion
objective, without any annotation or prior knowledge about regions during
training. A computational bottleneck, built into the neural architecture,
encourages the denoising network to partition an input into regions, denoise
them in parallel, and combine the results. Our trained model generates both
synthetic images and, by simple examination of its internal predicted
partitions, a semantic segmentation of those images. Without any finetuning, we
directly apply our unsupervised model to the downstream task of segmenting real
images via noising and subsequently denoising them. Experiments demonstrate
that our model achieves accurate unsupervised image segmentation and
high-quality synthetic image generation across multiple datasets.
Related papers
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
An increasing privacy concern exists regarding training large-scale image segmentation models on unauthorized private data.
We exploit the concept of unlearnable examples to make images unusable to model training by generating and adding unlearnable noise into the original images.
We empirically verify the effectiveness of UnSeg across 6 mainstream image segmentation tasks, 10 widely used datasets, and 7 different network architectures.
arXiv Detail & Related papers (2024-10-13T16:34:46Z) - Patch-Based Deep Unsupervised Image Segmentation using Graph Cuts [0.0]
We propose a patch-based unsupervised image segmentation strategy that bridges advances in unsupervised feature extraction with the algorithmic help of classical graph-based methods.
We show that a simple convolutional neural network, trained to classify image patches, naturally leads to a state-of-the-art fully-convolutional unsupervised pixel-level segmenter.
arXiv Detail & Related papers (2023-11-01T19:59:25Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - Image Embedding for Denoising Generative Models [0.0]
We focus on Denoising Diffusion Implicit Models due to the deterministic nature of their reverse diffusion process.
As a side result of our investigation, we gain a deeper insight into the structure of the latent space of diffusion models.
arXiv Detail & Related papers (2022-12-30T17:56:07Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - Joint Optical Neuroimaging Denoising with Semantic Tasks [2.756263525080896]
This work connects a supervised denoising and a semantic segmentation model together to form a end-to-end model.
We use both the supervised and the self-supervised models for the denoising and introduce a new cost term for the joint denoising and the segmentation setup.
arXiv Detail & Related papers (2021-09-22T03:21:29Z) - Diffusion-Based Representation Learning [65.55681678004038]
We augment the denoising score matching framework to enable representation learning without any supervised signal.
In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective.
Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification.
arXiv Detail & Related papers (2021-05-29T09:26:02Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.